sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Artificial Intelligence (AI) In Oncology Market was valued at USD 4.2 billion in 2023 and will surpass USD 17.0 billion by 2030; growing at a CAGR of 22.3% during 2024 - 2030.
The artificial intelligence (AI) in oncology market is rapidly evolving, transforming cancer care through the integration of advanced technologies such as machine learning (ML), deep learning (DL), and natural language processing (NLP). AI tools are revolutionizing cancer diagnosis, treatment planning, and drug discovery by leveraging vast amounts of clinical data and medical imaging. These technologies improve diagnostic accuracy, accelerate drug development processes, and enable personalized medicine, driving better patient outcomes and optimizing healthcare resources. The ongoing advancements in AI algorithms are enhancing precision oncology, making it a critical area of growth in healthcare innovation.
AI is enabling healthcare providers to make faster, more accurate decisions, and personalize treatment regimens for cancer patients based on genetic, molecular, and clinical data. The growing adoption of AI in oncology reflects a broader trend in the healthcare sector towards leveraging data-driven solutions to enhance clinical decision-making. As AI technologies continue to improve, their applications in oncology are expected to expand, making the market a key focus for both technological and healthcare advancements.
The machine learning (ML) segment is the largest within the AI in oncology market, owing to its versatility in analyzing complex and diverse datasets, which is essential for accurate cancer diagnostics and treatment planning. ML algorithms are increasingly being used in oncology for detecting cancer in medical imaging, identifying biomarkers, and predicting patient outcomes based on historical data. By processing vast amounts of clinical and imaging data, ML models can uncover patterns that human clinicians might overlook, enabling earlier detection of cancer and better-targeted therapies.
Machine learning’s ability to adapt and improve through continuous learning makes it highly effective in cancer diagnosis, where early detection and accurate classification are critical. Moreover, ML is also instrumental in personalized medicine, tailoring treatment protocols to individual patients based on their unique genetic and clinical profiles. As more healthcare systems adopt ML in oncology for decision support and diagnostic accuracy, this segment is expected to continue dominating the market.
The cloud-based deployment mode is the fastest-growing segment within the AI in oncology market, driven by its scalability, flexibility, and ability to store and process large volumes of data. Cloud computing provides oncology practitioners and researchers with easy access to powerful AI tools without the need for extensive in-house infrastructure. The cloud allows for seamless integration of data from various sources, including patient records, clinical trials, and imaging data, enabling AI algorithms to deliver insights more efficiently.
Cloud-based platforms facilitate collaboration among healthcare providers and researchers, enabling faster data sharing and real-time access to AI-powered diagnostics and treatment recommendations. This is particularly crucial in oncology, where quick decision-making is essential for effective patient care. As more healthcare systems and research institutions move towards cloud-based solutions for oncology applications, this deployment mode is expected to see significant growth in the coming years.
The cancer diagnosis application is the largest within the AI in oncology market, as it represents the most widely used application of AI technologies in the field of oncology. Early detection of cancer is crucial for improving survival rates, and AI tools have proven to be highly effective in identifying potential cancerous lesions, tumors, and other abnormalities in medical imaging, such as mammograms, CT scans, and MRIs. AI-powered diagnostic systems can process vast amounts of imaging data to identify patterns and detect cancers at earlier stages, when treatment is most effective.
The demand for AI-powered diagnostic tools in oncology is growing rapidly as healthcare systems seek to enhance diagnostic accuracy, reduce false positives and negatives, and streamline the diagnostic workflow. AI technologies are also helping to reduce the burden on radiologists and pathologists, enabling them to focus on complex cases and providing more timely diagnoses. Given the increasing need for accurate and early cancer detection, cancer diagnosis will continue to be the largest application for AI in oncology.
Hospitals are the largest end-use industry in the AI in oncology market, driven by their central role in cancer diagnosis, treatment, and patient management. Hospitals have high patient volumes and are under constant pressure to improve diagnostic accuracy, reduce wait times, and enhance treatment outcomes. AI-powered solutions, such as those for cancer diagnosis, image analysis, and personalized treatment recommendations, are being increasingly adopted in hospitals to streamline operations and improve patient care.
In hospitals, AI technologies are being used for various purposes, including early cancer detection, treatment planning, and monitoring of patient progress. These systems support oncologists by providing data-driven insights, helping to make more informed decisions and personalize care for each patient. The ability of AI to enhance the accuracy and efficiency of oncology services makes hospitals the largest end-user of AI in oncology technologies.
North America is the largest region in the AI in oncology market, primarily due to its advanced healthcare infrastructure, high adoption rate of AI technologies, and significant investment in research and development. The United States, in particular, leads the market, with numerous healthcare providers and research institutions integrating AI tools into oncology practices. The region's strong regulatory framework, coupled with the high demand for innovative cancer treatment options, drives the adoption of AI technologies in oncology.
The presence of major tech companies specializing in AI, such as IBM and Google Health, further boosts the market in North America. Additionally, the region's healthcare institutions are increasingly focused on improving cancer care, making North America a key market for AI solutions in oncology. The growing number of AI-driven clinical trials, along with strong government and private sector investments in healthcare innovation, positions North America as the dominant region in the global market.
The AI in oncology market is highly competitive, with several key players driving technological advancements and innovations. Leading companies in this market include IBM Watson Health, Siemens Healthineers, GE Healthcare, Philips Healthcare, and Aidoc. These companies are at the forefront of AI research and development, focusing on creating advanced AI platforms for cancer detection, diagnostics, and personalized treatment.
The competitive landscape is characterized by strategic partnerships, mergers and acquisitions, and collaborations with healthcare providers and research institutions. Companies are investing heavily in AI research to enhance the accuracy of their diagnostic tools and develop innovative cancer therapies. As the market continues to evolve, both established healthcare companies and AI startups are expected to play a significant role in advancing oncology care through artificial intelligence. The growing focus on personalized medicine, coupled with technological advancements in AI, will drive future competition and innovation in this space.
Report Features |
Description |
Market Size (2023) |
USD 4.2 Billion |
Forecasted Value (2030) |
USD 17.0 Billion |
CAGR (2024 – 2030) |
22.3% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence (AI) in Oncology Market by Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), by Deployment Mode (Cloud-Based, On-Premise), by Application (Cancer Diagnosis, Drug Discovery and Development, Personalized Medicine), by End-Use Industry (Hospitals, Diagnostic Centers) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Aidoc, Cancer Research UK, Fujifilm Holdings, GE Healthcare, Google Health, IBM Watson Health, Microsoft, NVIDIA, PathAI, Philips Healthcare, Siemens Healthineers, Tempus, Zebra Medical Vision |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence (AI) In Oncology Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Deep Learning |
4.3. Natural Language Processing |
4.4. Computer Vision |
5. Artificial Intelligence (AI) In Oncology Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Cloud-Based |
5.2. On-Premise |
6. Artificial Intelligence (AI) In Oncology Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Cancer Diagnosis |
6.2. Drug Discovery and Development |
6.3. Personalized Medicine |
6.4. Others |
7. Artificial Intelligence (AI) In Oncology Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Hospitals |
7.2. Diagnostic Centers |
7.3. Others |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Artificial Intelligence (AI) In Oncology Market, by Technology |
8.2.7. North America Artificial Intelligence (AI) In Oncology Market, by Deployment Mode |
8.2.8. North America Artificial Intelligence (AI) In Oncology Market, by Application |
8.2.9. North America Artificial Intelligence (AI) In Oncology Market, by End-Use Industry |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Artificial Intelligence (AI) In Oncology Market, by Technology |
8.2.10.1.2. US Artificial Intelligence (AI) In Oncology Market, by Deployment Mode |
8.2.10.1.3. US Artificial Intelligence (AI) In Oncology Market, by Application |
8.2.10.1.4. US Artificial Intelligence (AI) In Oncology Market, by End-Use Industry |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. Aidoc |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Cancer Research UK |
10.3. Fujifilm Holdings |
10.4. GE Healthcare |
10.5. Google Health |
10.6. IBM Watson Health |
10.7. Merck & Co. |
10.8. Microsoft |
10.9. NVIDIA |
10.10. PathAI |
10.11. Philips Healthcare |
10.12. Siemens Healthineers |
10.13. Tempus |
10.14. Verily Life Sciences |
10.15. Zebra Medical Vision |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence (AI) In Oncology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence (AI) In Oncology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence (AI) In Oncology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.