sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Automated Machine Learning Market was valued at USD 1.1 billion in 2023 and will surpass USD 12.5 billion by 2030; growing at a CAGR of 41.3% during 2024 - 2030.
The Automated Machine Learning (AutoML) market has witnessed significant growth as organizations across various industries embrace machine learning and artificial intelligence (AI) to enhance decision-making, operational efficiency, and predictive capabilities. AutoML platforms automate the end-to-end machine learning process, including data preparation, model selection, training, and deployment, enabling businesses to leverage AI without requiring deep technical expertise. This has democratized access to machine learning, leading to increased adoption, particularly among small and medium-sized enterprises (SMEs), which are now able to integrate AI into their operations without a large in-house team of data scientists.
The AutoML market is growing across various segments, driven by technological advancements, the need for business automation, and the increasing use of data-driven insights across industries. The key components of AutoML are model development, deployment, and training, with each playing a crucial role in making machine learning accessible and scalable. Below, we explore the fastest-growing and largest subsegments within each segment of the market.
Model deployment is the largest subsegment in the AutoML market as businesses increasingly focus on moving machine learning models from development environments to production. Model deployment is critical because it allows organizations to implement machine learning models at scale, ensuring they provide continuous value by making real-time predictions. Businesses in industries such as retail, healthcare, and finance are deploying these models to enhance their customer experience, optimize operations, and improve decision-making.
The growing need for organizations to operationalize their AI models is a major driver for this subsegment's dominance. Enterprises are seeking solutions that can automate the deployment of machine learning models seamlessly, without requiring manual intervention, allowing for faster time to value. This trend is supported by the rapid development of deployment frameworks and tools that simplify the transition from model development to real-world application.
The solution component in the AutoML market has emerged as the largest due to its ability to offer organizations end-to-end AI capabilities. AutoML solutions generally include tools and platforms that automate the machine learning process, from data preprocessing to model selection, training, and deployment. These comprehensive solutions are highly valued by organizations looking to implement machine learning at scale, as they reduce complexity and time-to-market.
As the demand for end-to-end machine learning solutions continues to rise, more vendors are focusing on developing robust platforms that cater to various industries. This includes cloud-based solutions that enable businesses to scale machine learning models without the need for extensive infrastructure investments. Solutions from companies like DataRobot, Google, and Microsoft are driving the growth of this subsegment by making AI more accessible to organizations of all sizes.
The BFSI (Banking, Financial Services, and Insurance) industry is the largest end-user industry in the AutoML market, driven by the increasing need for predictive analytics and enhanced risk management. Financial institutions are using machine learning to predict market trends, assess credit risk, detect fraud, and personalize customer experiences. The need for real-time insights and decision-making in the BFSI sector has made machine learning and AutoML a key enabler of digital transformation.
AutoML platforms provide financial institutions with advanced analytics capabilities, automating complex processes such as data analysis and model creation, which would otherwise require significant resources. With the increased adoption of digital banking and financial services, the BFSI sector’s demand for AI and machine learning technologies is expected to continue growing, further expanding the market for AutoML solutions.
Neural networks are the largest technology segment in the AutoML market due to their versatility and accuracy in solving complex tasks such as image recognition, natural language processing (NLP), and predictive analytics. This type of machine learning algorithm mimics the way the human brain processes information, making it highly effective in recognizing patterns and making predictions.
Neural networks are widely used in industries such as healthcare, retail, and automotive, where large volumes of unstructured data, like images and text, need to be processed. With the rise of deep learning and advancements in neural network architectures, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the demand for neural network-based solutions in AutoML is expected to continue driving growth in the market.
Cloud-based deployment is the fastest-growing subsegment in the AutoML market as businesses increasingly turn to the cloud for scalable and cost-effective solutions. Cloud-based platforms allow organizations to access powerful machine learning tools without investing in on-premises infrastructure, which can be costly and complex to maintain. Additionally, cloud providers offer flexible pricing models, enabling businesses to scale their machine learning models as needed.
The ability to deploy machine learning models on the cloud also offers advantages such as enhanced collaboration, ease of integration with other cloud services, and faster model updates. As cloud adoption accelerates across industries like healthcare, manufacturing, and retail, the demand for cloud-based AutoML platforms is expected to grow rapidly, positioning this deployment mode as the market’s fastest-growing segment.
North America remains the largest region in the AutoML market, owing to its strong adoption of artificial intelligence technologies, a highly developed IT infrastructure, and a large presence of key players such as Google, Microsoft, and Amazon Web Services. The region’s advanced technology ecosystem, coupled with significant investments in AI research and development, has created an ideal environment for the widespread deployment of AutoML solutions.
The BFSI and IT and Telecom sectors in North America are major contributors to the growth of AutoML, as these industries are heavily focused on leveraging AI for predictive analytics, automation, and operational efficiency. The growing number of startups and innovation hubs further strengthens the region's dominance in the AutoML market.
The competitive landscape of the Automated Machine Learning market is characterized by the presence of several large players offering robust solutions. Companies such as DataRobot, Google LLC, Amazon Web Services (AWS), Microsoft Corporation, and IBM Corporation dominate the market with their advanced AutoML platforms that cater to diverse industries. These companies continue to innovate and expand their offerings through acquisitions, partnerships, and product developments.
In addition to these major players, several startups are entering the market, bringing innovative solutions that target specific use cases, such as fraud detection in banking or demand forecasting in retail. As the market continues to evolve, the key players are focusing on enhancing the scalability, usability, and affordability of their AutoML solutions to remain competitive. Additionally, the adoption of cloud-based platforms and integration with other AI technologies is likely to intensify the competition in the coming years.
Report Features |
Description |
Market Size (2023) |
USD 1.1 Billion |
Forecasted Value (2030) |
USD 12.5 Billion |
CAGR (2024 – 2030) |
41.3% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Automated Machine Learning Market By Type (Model Deployment, Model Development, Model Training), By Component (Solution, Services), By End-User Industry (Healthcare, IT and Telecom, BFSI, Retail, Automotive, Manufacturing, Government), By Deployment Mode (On-Premises, Cloud-Based), By Technology (Neural Networks, Decision Trees, Support Vector Machines, Ensemble Learning) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Alteryx, Inc.,Amazon Web Services (AWS),Anaconda,Artelnics,BigML,DataRobot,Google LLC,H2O.ai,IBM Corporation,Microsoft Azure,Microsoft Corporation,RapidMiner,SAS Institute Inc.,TPOT (Python-based Library),Zebra Medical Vision |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Automated Machine Learning Market, by Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Model Deployment |
4.2. Model Development |
4.3. Model Training |
5. Automated Machine Learning Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Solution |
5.2. Services |
6. Automated Machine Learning Market, by End-User Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Healthcare |
6.2. IT and Telecom |
6.3. BFSI (Banking, Financial Services, and Insurance) |
6.4. Retail |
6.5. Automotive |
6.6. Manufacturing |
6.7. Government |
6.8. Others |
7. Automated Machine Learning Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. On-Premises |
7.2. Cloud-Based |
8. Automated Machine Learning Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Neural Networks |
8.2. Decision Trees |
8.3. Support Vector Machines (SVM) |
8.4. Ensemble Learning |
8.5. Others |
9. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
9.1. Regional Overview |
9.2. North America |
9.2.1. Regional Trends & Growth Drivers |
9.2.2. Barriers & Challenges |
9.2.3. Opportunities |
9.2.4. Factor Impact Analysis |
9.2.5. Technology Trends |
9.2.6. North America Automated Machine Learning Market, by Type |
9.2.7. North America Automated Machine Learning Market, by Component |
9.2.8. North America Automated Machine Learning Market, by End-User Industry |
9.2.9. North America Automated Machine Learning Market, by Deployment Mode |
9.2.10. North America Automated Machine Learning Market, by Technology |
9.2.11. By Country |
9.2.11.1. US |
9.2.11.1.1. US Automated Machine Learning Market, by Type |
9.2.11.1.2. US Automated Machine Learning Market, by Component |
9.2.11.1.3. US Automated Machine Learning Market, by End-User Industry |
9.2.11.1.4. US Automated Machine Learning Market, by Deployment Mode |
9.2.11.1.5. US Automated Machine Learning Market, by Technology |
9.2.11.2. Canada |
9.2.11.3. Mexico |
*Similar segmentation will be provided for each region and country |
9.3. Europe |
9.4. Asia-Pacific |
9.5. Latin America |
9.6. Middle East & Africa |
10. Competitive Landscape |
10.1. Overview of the Key Players |
10.2. Competitive Ecosystem |
10.2.1. Level of Fragmentation |
10.2.2. Market Consolidation |
10.2.3. Product Innovation |
10.3. Company Share Analysis |
10.4. Company Benchmarking Matrix |
10.4.1. Strategic Overview |
10.4.2. Product Innovations |
10.5. Start-up Ecosystem |
10.6. Strategic Competitive Insights/ Customer Imperatives |
10.7. ESG Matrix/ Sustainability Matrix |
10.8. Manufacturing Network |
10.8.1. Locations |
10.8.2. Supply Chain and Logistics |
10.8.3. Product Flexibility/Customization |
10.8.4. Digital Transformation and Connectivity |
10.8.5. Environmental and Regulatory Compliance |
10.9. Technology Readiness Level Matrix |
10.10. Technology Maturity Curve |
10.11. Buying Criteria |
11. Company Profiles |
11.1. Alteryx, Inc. |
11.1.1. Company Overview |
11.1.2. Company Financials |
11.1.3. Product/Service Portfolio |
11.1.4. Recent Developments |
11.1.5. IMR Analysis |
*Similar information will be provided for other companies |
11.2. Amazon Web Services (AWS) |
11.3. Anaconda |
11.4. Artelnics |
11.5. BigML |
11.6. DataRobot |
11.7. Google LLC |
11.8. H2O.ai |
11.9. IBM Corporation |
11.10. Microsoft Azure |
11.11. Microsoft Corporation |
11.12. RapidMiner |
11.13. SAS Institute Inc. |
11.14. TPOT (Python-based Library) |
11.15. Zebra Medical Vision |
12. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Automated Machine Learning Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Automated Machine Learning Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Automated Machine Learning ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Automated Machine Learning Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.