As per Intent Market Research, the Artificial Intelligence (AI) In Animal Health Market was valued at USD 1.6 Billion in 2024-e and will surpass USD 4.0 Billion by 2030; growing at a CAGR of 16.9% during 2025-2030.
The AI in animal health market is experiencing significant growth due to the increasing adoption of advanced technologies that enable improved diagnostics, monitoring, and treatment for animals. Artificial intelligence solutions are being used to enhance veterinary practices, optimize animal healthcare, and predict potential health issues. With applications ranging from disease diagnostics to predictive healthcare and animal monitoring, AI is revolutionizing the veterinary sector, providing tools that support better outcomes for both livestock and pets. The market's growth is also being driven by the increasing awareness of animal health and the demand for more personalized and efficient healthcare solutions.
Machine Learning Technology is Leading the Charge in AI for Animal Health
Machine learning is the largest segment within the AI technology space for animal health due to its ability to analyze vast amounts of data and derive meaningful insights. This technology is used extensively in diagnostics, disease prediction, and treatment planning. By utilizing algorithms to detect patterns in medical data, machine learning is transforming the way veterinarians approach patient care. It helps improve diagnostic accuracy, reduce human error, and allows for predictive health monitoring, which is crucial in both livestock management and companion animal care. The ability to continuously learn and improve with more data ensures that machine learning will remain at the forefront of AI applications in the animal health sector.
Disease Diagnostics Application is Key to Advancing Veterinary Healthcare
In terms of application, disease diagnostics holds the largest share in the AI in animal health market. The ability to diagnose diseases at an early stage using AI-driven tools is a game changer in veterinary healthcare. AI-powered diagnostic systems, often leveraging machine learning and computer vision, can analyze medical imaging, detect abnormalities, and identify patterns that are not visible to the human eye. This leads to faster, more accurate diagnoses, enabling earlier intervention and more effective treatment plans. Disease diagnostics are particularly important in the livestock industry, where early detection can prevent the spread of infectious diseases and reduce economic losses. The growth of this segment is expected to continue as veterinarians and animal health professionals increasingly rely on AI to support their diagnostic decisions.
Veterinary Clinics Drive the End-User Market for AI in Animal Health
Veterinary clinics are the largest end-user segment in the AI in animal health market, as they represent a significant portion of the overall animal healthcare ecosystem. Veterinary clinics benefit from AI technologies that enhance diagnostic capabilities, improve treatment planning, and provide personalized care for animals. With the rising demand for advanced veterinary services, particularly in urban areas, the adoption of AI technologies is becoming essential for providing high-quality care. AI-powered tools like diagnostic imaging software and patient management systems allow veterinary clinics to offer more accurate, timely, and efficient services, which is increasing their popularity. As the veterinary care sector grows, the demand for AI solutions is likely to continue expanding within clinics worldwide.
AI Software Leads the Product Market in Animal Health
AI software dominates the product segment in the AI in animal health market due to its broad application across various healthcare solutions. Software solutions are designed to optimize animal health diagnostics, monitoring, and management by incorporating machine learning algorithms, data analysis, and predictive capabilities. These software solutions enable veterinary professionals to make more informed decisions, ultimately improving patient outcomes. The rise of cloud-based AI software also offers greater accessibility, scalability, and integration with existing veterinary systems. As the demand for more sophisticated veterinary care grows, the role of AI software is expected to expand, supporting veterinarians and healthcare providers in delivering more personalized and effective treatments.
North America is the Leading Region for AI in Animal Health
North America holds the largest share in the AI in animal health market, driven by advanced healthcare infrastructure, high adoption rates of AI technologies, and significant investments in animal health research. The United States, in particular, has been at the forefront of integrating AI into various sectors, including veterinary care. With a strong presence of AI technology companies and research institutions, the region is seeing rapid growth in the application of AI in diagnostics, monitoring, and disease prevention. The increasing focus on pet health and the growing livestock industry are key factors contributing to North America's dominance in this market. Furthermore, regulatory frameworks in North America support the adoption of AI in animal health, fostering innovation and facilitating market growth.
Competitive Landscape and Leading Companies in AI for Animal Health
The AI in animal health market is highly competitive, with numerous companies leading the charge in developing and implementing AI technologies. Zoetis Inc. and Merck Animal Health are among the top players, offering AI-powered solutions that improve animal healthcare and diagnostics. Other significant companies like IBM Corporation, Vetsolutions, and PetPace LLC are also contributing to the growth of this market by providing advanced AI solutions such as veterinary imaging tools, disease detection systems, and real-time health monitoring services. With the increasing demand for AI technologies, these companies are continually innovating to expand their product offerings and maintain a competitive edge. Partnerships, acquisitions, and collaborations are common in the market as companies seek to strengthen their capabilities and increase their market presence. As the industry continues to evolve, companies will need to focus on innovation and quality to stay ahead in this rapidly growing sector.
List of Leading Companies:
- Zoetis Inc.
- Merck Animal Health
- IBM Corporation
- Vetsolutions (Hill’s Pet Nutrition)
- AAI (Animal Artificial Intelligence) Technologies
- PetPace LLC
- Data Science Automation
- ForceField Technologies
- Companion Medical Systems
- Vetology AI
- Agribotix
- PathAI
- Intel Corporation
- NVIDIA Corporation
- DVM360
Recent Developments:
- Zoetis Inc. launched a new AI-driven veterinary imaging platform that uses machine learning to diagnose diseases faster and with greater accuracy in both small and large animals.
- Merck Animal Health acquired a leading AI company focused on veterinary diagnostics, strengthening its position in the animal healthcare market with innovative technology.
- IBM Corporation announced a partnership with a major pet care provider to enhance their AI-based animal monitoring solutions, improving real-time health monitoring for pets.
- PathAI introduced a new AI-powered diagnostic tool for animal health professionals to detect early signs of diseases in livestock, particularly in cattle and poultry.
- NVIDIA Corporation expanded its collaboration with leading veterinary research institutions to integrate AI into animal health solutions, improving diagnostic tools and treatment plans.
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 1.6 Billion |
Forecasted Value (2030) |
USD 4.0 Billion |
CAGR (2025 – 2030) |
16.9% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence (AI) in Animal Health Market by Technology (Machine Learning, Natural Language Processing, Robotics, Computer Vision), by Application (Disease Diagnostics, Predictive Healthcare, Veterinary Imaging, Treatment Planning, Animal Monitoring), by End-User (Veterinary Clinics, Animal Farms, Pet Care Providers, Research & Development Institutions), by Product (AI Software, AI Hardware, AI Services) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Zoetis Inc., Merck Animal Health, IBM Corporation, Vetsolutions (Hill’s Pet Nutrition), AAI (Animal Artificial Intelligence) Technologies, PetPace LLC, Data Science Automation, ForceField Technologies, Companion Medical Systems, Vetology AI, Agribotix, PathAI, Intel Corporation, NVIDIA Corporation, DVM360 |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
Frequently Asked Questions
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence (AI) In Animal Health Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing |
4.3. Robotics |
4.4. Computer Vision |
5. Artificial Intelligence (AI) In Animal Health Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. Disease Diagnostics |
5.2. Predictive Healthcare |
5.3. Veterinary Imaging |
5.4. Treatment Planning |
5.5. Animal Monitoring |
6. Artificial Intelligence (AI) In Animal Health Market, by End-User (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Veterinary Clinics |
6.2. Animal Farms |
6.3. Pet Care Providers |
6.4. Research & Development Institutions |
7. Artificial Intelligence (AI) In Animal Health Market, by Product (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. AI Software |
7.2. AI Hardware |
7.3. AI Services |
8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Artificial Intelligence (AI) In Animal Health Market, by Technology |
8.2.7. North America Artificial Intelligence (AI) In Animal Health Market, by Application |
8.2.8. North America Artificial Intelligence (AI) In Animal Health Market, by End-User |
8.2.9. North America Artificial Intelligence (AI) In Animal Health Market, by Product |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Artificial Intelligence (AI) In Animal Health Market, by Technology |
8.2.10.1.2. US Artificial Intelligence (AI) In Animal Health Market, by Application |
8.2.10.1.3. US Artificial Intelligence (AI) In Animal Health Market, by End-User |
8.2.10.1.4. US Artificial Intelligence (AI) In Animal Health Market, by Product |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. Zoetis Inc. |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Merck Animal Health |
10.3. IBM Corporation |
10.4. Vetsolutions (Hill’s Pet Nutrition) |
10.5. AAI (Animal Artificial Intelligence) Technologies |
10.6. PetPace LLC |
10.7. Data Science Automation |
10.8. ForceField Technologies |
10.9. Companion Medical Systems |
10.10. Vetology AI |
10.11. Agribotix |
10.12. PathAI |
10.13. Intel Corporation |
10.14. NVIDIA Corporation |
10.15. DVM360 |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence (AI) In Animal Health Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence (AI) In Animal Health Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence (AI) In Animal Health Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.