sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Logistics Market was valued at USD 4.7 billion in 2023 and will surpass USD 17.3 billion by 2030; growing at a CAGR of 20.4% during 2024 - 2030.
The global market for artificial intelligence (AI) in supply chain management is experiencing rapid growth, driven by the increasing demand for automation, improved efficiency, and data-driven decision-making. AI technologies, including machine learning, natural language processing (NLP), computer vision, and robotic process automation (RPA), are revolutionizing the supply chain by enhancing critical functions such as inventory management, transportation optimization, and demand forecasting. These innovations are enabling businesses to reduce operational costs, improve customer satisfaction, and navigate the complexities of modern supply chains with greater agility and precision. With the rising adoption of these technologies across industries, the market is poised for substantial expansion over the next several years.
Machine learning (ML) continues to dominate the AI supply chain landscape due to its broad applicability and scalability across various supply chain functions. ML algorithms are being increasingly used for predictive analytics, demand forecasting, and inventory management, among other tasks. Their ability to process vast amounts of data, recognize patterns, and make accurate predictions makes them invaluable for businesses seeking to optimize their operations. The adaptability of machine learning algorithms across industries—ranging from automotive to healthcare—has cemented its position as the largest subsegment within AI for supply chain management. The growing need for real-time insights and dynamic decision-making has propelled machine learning to the forefront of supply chain technology adoption.
Inventory control and planning remain the largest application of AI within the supply chain sector. Effective inventory management is a critical factor in maintaining the balance between supply and demand while minimizing costs and maximizing service levels. AI-powered solutions that use machine learning and predictive analytics to optimize inventory levels, reduce stockouts, and improve order accuracy are in high demand. Businesses across industries, from retail to manufacturing, are increasingly relying on AI technologies to forecast demand, manage stock levels, and enhance procurement strategies. As companies look to streamline operations and reduce costs, AI-driven inventory control and planning are essential tools for ensuring an efficient and responsive supply chain.
Transportation network design is the fastest-growing application of AI in supply chain management, driven by the need for cost-effective, efficient, and sustainable logistics solutions. AI technologies are increasingly being used to optimize transportation routes, reduce fuel consumption, and enhance fleet management. By leveraging real-time data, predictive analytics, and machine learning, AI is helping businesses design transportation networks that reduce delays, lower costs, and improve overall efficiency. The growing focus on sustainability and environmental impact is further fueling the demand for AI in transportation network design, as companies seek to minimize their carbon footprint and adopt greener practices. This application is poised for substantial growth as businesses prioritize smarter logistics management.
The automotive industry stands as the largest vertical for AI adoption in the supply chain, driven by the industry's ongoing efforts to integrate advanced technologies for manufacturing optimization and supply chain automation. Automotive companies are increasingly utilizing AI for demand forecasting, parts tracking, inventory management, and supply chain optimization. The complexity of the global automotive supply chain, combined with the industry's need to enhance production efficiency and reduce costs, has led to widespread AI adoption. As automation and AI technologies continue to evolve, the automotive industry is expected to remain a dominant force in the AI supply chain market, leveraging these tools to meet the growing demand for electric vehicles and autonomous driving technologies.
North America remains the largest region in the AI supply chain market, driven by significant technological advancements, early adoption, and strong investment in AI research and development. The United States, in particular, is home to numerous leading technology companies, fostering an ecosystem conducive to AI innovation and deployment across various industries. With a highly developed infrastructure, robust technological capabilities, and a strong demand for automation and optimization, North America continues to lead the way in AI adoption for supply chain management. This region's focus on enhancing operational efficiency and gaining a competitive edge through the use of AI technologies has contributed to its dominant position in the global market.
The AI supply chain market is highly competitive, with several key players driving innovation and shaping the market's future. Leading companies in this space include tech giants such as IBM, Microsoft, Google, and Amazon, which are pioneering AI-driven solutions for supply chain management. These companies, along with emerging players specializing in AI and machine learning, are consistently expanding their portfolios through strategic partnerships, acquisitions, and continuous R&D investments. The competitive landscape is marked by a growing emphasis on automation, data analytics, and cloud-based solutions to cater to the evolving needs of businesses looking to optimize their supply chain operations. As the market continues to grow, companies will focus on expanding their AI capabilities to offer comprehensive, end-to-end solutions that address the diverse challenges faced by global supply chains.
Report Features |
Description |
Market Size (2023) |
USD 4.7 Billion |
Forecasted Value (2030) |
USD 17.3 Billion |
CAGR (2024 – 2030) |
20.4% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Logistics Market by Technology (Machine Learning, Natural Language Processing, Computer Vision, Robotic Process Automation, Others), Application (Inventory Control & Planning, Transportation Network Design, Purchasing & Supply Management, Demand Planning & Forecasting, Warehouse Management, Freight Management, Others), Industry Vertical (Automotive, Food and Beverages, Manufacturing, Healthcare, Retail, Consumer Electronics, Others) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Amazon Web Services, Inc., C.H. Robinson , GEODIS, IBM Corporation, Intel Corporation, Microsoft , Oracle , Pluto7 and XPO, Inc. |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Logistics Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Computer Vision |
4.4. Robotic Process Automation (RPA) |
4.5. Others |
5. AI in Logistics Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Inventory Control & Planning |
5.2. Transportation Network Design |
5.3. Purchasing & Supply Management |
5.4. Demand Planning & Forecasting |
5.5. Warehouse Management |
5.6. Freight Management |
5.7. Others |
6. AI in Logistics Market, by Industry Vertical (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Automotive |
6.2. Food and Beverages |
6.3. Manufacturing |
6.4. Healthcare |
6.5. Retail |
6.6. Consumer Electronics |
6.7. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Logistics Market, by Technology |
7.2.7. North America AI in Logistics Market, by Application |
7.2.8. North America AI in Logistics Market, by Industry Vertical |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Logistics Market, by Technology |
7.2.9.1.2. US AI in Logistics Market, by Application |
7.2.9.1.3. US AI in Logistics Market, by Industry Vertical |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Amazon Web Services, Inc. |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. C.H. Robinson |
9.3. GEODIS |
9.4. IBM Corporation |
9.5. Intel Corporation |
9.6. Microsoft |
9.7. NVIDIA Corporation |
9.8. Oracle |
9.9. Pluto7 |
9.10. XPO, Inc. |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Logistics Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Logistics Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Logistics ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Logistics Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.