sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Hardware Market was valued at USD 42.2 billion in 2023 and will surpass USD 137.3 billion by 2030; growing at a CAGR of 18.4% during 2024 - 2030.
The AI in hardware market is revolutionizing industries by providing high-performance computing capabilities essential for processing vast amounts of data generated by artificial intelligence applications. With rapid advancements in AI-driven technologies such as machine learning, deep learning, and edge computing, specialized hardware solutions have become critical enablers of real-time data processing and decision-making. These hardware components are empowering applications ranging from autonomous vehicles to healthcare diagnostics, driving significant growth and investment across global markets.
This analysis highlights the largest and fastest-growing subsegments within component type, technology, application, and end-use industry categories, as well as insights into the regional landscape and competitive environment shaping this dynamic market.
AI processors are the largest component type in the AI in hardware market, driven by their central role in executing complex AI algorithms. These processors, including GPUs (Graphics Processing Units), TPUs (Tensor Processing Units), and custom AI chips, deliver the computational power necessary for deep learning, neural network training, and real-time data analysis. Their scalability and ability to handle parallel processing make them indispensable for AI applications across industries.
In particular, the demand for AI processors has surged in data centers and cloud computing environments where intensive AI workloads are performed. The development of energy-efficient and high-performance processors by leading players, such as NVIDIA and AMD, further underscores their dominance in the market. As AI processors continue to evolve with innovations in chip design and architecture, their role in powering next-generation AI technologies remains paramount.
Edge AI hardware is the fastest-growing technology segment, propelled by the rising demand for localized data processing at the edge of networks. Unlike traditional AI systems that rely on cloud infrastructure, edge AI hardware allows for real-time decision-making closer to the source of data generation, reducing latency and enhancing privacy. This is especially critical in applications such as autonomous vehicles, smart devices, and industrial automation, where immediate responses are necessary.
The growth of edge AI hardware is fueled by advancements in low-power AI chips and sensors that enable devices to operate efficiently in edge environments. With the increasing adoption of IoT devices and the proliferation of smart cities, edge AI hardware is poised to become a cornerstone of AI applications across multiple sectors, driving its rapid expansion in the market.
The image and video processing application segment is the largest in the AI in hardware market, thanks to its extensive use in surveillance, content creation, and medical imaging. AI hardware plays a crucial role in processing and analyzing visual data, enabling tasks such as object detection, facial recognition, and anomaly detection. These capabilities are highly valued in industries ranging from security and entertainment to healthcare and automotive.
For example, in autonomous vehicles, image and video processing hardware enables real-time object recognition and environment mapping, ensuring safe navigation. Similarly, in healthcare, AI hardware enhances diagnostic accuracy by processing medical imaging data. With the increasing integration of AI into these critical applications, the image and video processing segment continues to dominate the market.
The automotive industry is the fastest-growing end-use industry in the AI in hardware market, driven by the development of autonomous and semi-autonomous vehicles. AI hardware is a critical component of advanced driver-assistance systems (ADAS) and self-driving technologies, enabling vehicles to process sensor data, make real-time decisions, and ensure passenger safety. Leading automotive manufacturers are heavily investing in AI hardware to achieve higher levels of autonomy and enhance vehicle performance.
Furthermore, AI hardware is instrumental in predictive maintenance, optimizing vehicle efficiency, and improving the overall driving experience. As the automotive industry shifts toward electric and autonomous mobility, the adoption of AI hardware in this sector is set to accelerate, making it a key growth driver in the market.
North America is the largest region in the AI in hardware market, benefiting from a robust AI ecosystem comprising leading technology companies, research institutions, and well-established industries. The region’s strong focus on innovation, coupled with significant investments in AI infrastructure, has positioned it as a global leader in AI hardware development. Companies like NVIDIA, Intel, and Qualcomm are headquartered in North America and are at the forefront of designing cutting-edge AI hardware solutions.
The widespread adoption of AI technologies across sectors such as healthcare, automotive, and consumer electronics further fuels market growth in the region. Additionally, government initiatives supporting AI research and development contribute to North America’s dominance in the global AI in hardware market.
The competitive landscape of the AI in hardware market is characterized by intense innovation and collaboration among key players. Industry leaders such as NVIDIA, AMD, Intel, and Qualcomm are driving advancements in AI processors, memory chips, and accelerators. NVIDIA’s GPUs continue to dominate AI training and inference workloads, while Intel’s Xeon processors and Habana Labs accelerators offer robust solutions for diverse AI applications.
Emerging players and startups are also making significant strides by focusing on specialized hardware for niche applications such as edge AI and NLP. Partnerships between hardware manufacturers and AI software companies are becoming increasingly common, enabling seamless integration of hardware and software solutions. As competition intensifies, companies are focusing on developing energy-efficient, high-performance hardware to gain a competitive edge in this rapidly evolving market.
Report Features |
Description |
Market Size (2023) |
USD 42.2 Billion |
Forecasted Value (2030) |
USD 137.3 Billion |
CAGR (2024 – 2030) |
18.4% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Hardware Market By Component Type (AI Processors, AI Memory Chips, AI Accelerators, AI Sensors), By Technology (Machine Learning Hardware, Deep Learning Hardware, Natural Language Processing Hardware, Edge AI Hardware), By Application (Speech Recognition, Image & Video Processing, Predictive Maintenance, Autonomous Vehicles), By End-Use Industry (Consumer Electronics, Automotive, Healthcare, Industrial Automation, Robotics) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
NVIDIA Corporation, Intel Corporation, Advanced Micro Devices (AMD), Qualcomm Incorporated, IBM Corporation, Xilinx, Inc., Huawei Technologies Co., Ltd., Broadcom Inc., Google (Alphabet Inc.), Microsoft Corporation, Apple Inc., MediaTek Inc. and Samsung Electronics Co., Ltd. |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Hardware Market, by Component Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. AI Processors |
4.2. AI Memory Chips |
4.3. AI Accelerators |
4.4. AI Sensors |
4.5. Others |
5. AI in Hardware Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning Hardware |
5.2. Deep Learning Hardware |
5.3. Natural Language Processing (NLP) Hardware |
5.4. Edge AI Hardware |
5.5. Others |
6. AI in Hardware Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Speech Recognition |
6.2. Image & Video Processing |
6.3. Predictive Maintenance |
6.4. Autonomous Vehicles |
6.5. Others |
7. AI in Hardware Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Consumer Electronics |
7.2. Automotive |
7.3. Healthcare |
7.4. Industrial Automation |
7.5. Robotics |
7.6. Others |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI in Hardware Market, by Component Type |
8.2.7. North America AI in Hardware Market, by Technology |
8.2.8. North America AI in Hardware Market, by Application |
8.2.9. North America AI in Hardware Market, by End-Use Industry |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI in Hardware Market, by Component Type |
8.2.10.1.2. US AI in Hardware Market, by Technology |
8.2.10.1.3. US AI in Hardware Market, by Application |
8.2.10.1.4. US AI in Hardware Market, by End-Use Industry |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. NVIDIA Corporation |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Intel Corporation |
10.3. Advanced Micro Devices (AMD) |
10.4. Qualcomm Incorporated |
10.5. IBM Corporation |
10.6. Xilinx, Inc. |
10.7. ARM Holdings plc |
10.8. Huawei Technologies Co., Ltd. |
10.9. Broadcom Inc. |
10.10. Google (Alphabet Inc.) |
10.11. Microsoft Corporation |
10.12. Apple Inc. |
10.13. MediaTek Inc. |
10.14. Marvell Technology Group Ltd. |
10.15. Samsung Electronics Co., Ltd. |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Hardware Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Hardware Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Hardware ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Hardware Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.