sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Agriculture Market was valued at USD 2.4 billion in 2023 and will surpass USD 6.9 billion by 2030; growing at a CAGR of 16.2% during 2024 - 2030.
The AI in Agriculture market is transforming traditional farming practices by integrating advanced technologies to optimize productivity, resource management, and decision-making. Leveraging AI-driven insights, the sector addresses challenges like climate change, resource scarcity, and fluctuating market demands, enabling agricultural stakeholders to improve efficiency and sustainability. AI technologies such as machine learning, computer vision, and robotics have become integral to modern farming techniques, offering solutions for precise monitoring, predictive analytics, and automated processes.
As the demand for sustainable farming grows, AI applications in precision farming, livestock management, and crop monitoring are witnessing significant adoption. With increasing investments in AI innovation and supportive government initiatives, the market continues to expand, catering to diverse agricultural needs and enhancing overall productivity.
Machine learning stands out as the largest segment in AI technology for agriculture, driven by its extensive use in predictive analytics and decision support. Applications such as crop yield prediction and disease and pest detection leverage machine learning algorithms to analyze historical and real-time data, helping farmers make informed decisions about planting schedules, irrigation, and pest control. By identifying patterns in data, machine learning enables more accurate forecasting and efficient resource utilization.
Moreover, advancements in AI models and access to large datasets have amplified the effectiveness of machine learning in agriculture. As the technology evolves, its scope extends to areas like supply chain optimization and risk management, positioning it as a pivotal tool for modern agricultural practices.
The Precision Farming application segment is growing rapidly, particularly due to the demand for advanced tools like disease and pest detection. This application utilizes a combination of sensors, machine learning, and real-time data processing to identify potential threats to crops early, reducing losses and improving yield quality. By providing farmers with actionable insights, these systems enhance the precision and effectiveness of pesticide use, minimizing environmental impact.
In addition to pest detection, precision farming integrates technologies such as remote sensing and variable rate technology, enabling farmers to optimize input application, monitor crop health, and predict harvest outcomes. This holistic approach makes precision farming a cornerstone of AI integration in agriculture.
The Crop Monitoring and Management segment is witnessing significant growth due to the integration of computer vision software. Tools such as image recognition for crop monitoring use AI algorithms to analyze high-resolution images captured by drones and satellites. These insights help farmers detect anomalies, assess plant health, and optimize irrigation schedules.
As computer vision technology becomes more sophisticated, its application extends to broader areas like soil analysis and yield estimation. Combined with other AI tools, it offers a comprehensive solution for improving crop productivity and reducing losses.
Among end-user industries, Agricultural Producers represent the largest adopters of AI technologies. These stakeholders benefit directly from AI's ability to enhance productivity, reduce costs, and improve decision-making. From optimizing planting strategies to managing resources efficiently, AI empowers producers to remain competitive in a rapidly evolving market.
Similarly, agribusinesses and government bodies are increasingly investing in AI solutions to support innovation and sustainability in the agricultural sector. As collaborations between public and private entities grow, the adoption of AI across the industry is expected to accelerate.
The Asia-Pacific (APAC) region is experiencing the fastest growth in the AI in Agriculture Market, driven by the increasing adoption of AI technologies in countries like China, India, Japan, and Australia. With a large agricultural base, these countries are leveraging AI to enhance productivity, efficiency, and sustainability in farming. In particular, India and China, two of the largest agricultural producers globally, are investing heavily in AI-driven solutions for crop monitoring, yield prediction, pest detection, and precision farming.
The region's rapid adoption of AI in agriculture is also facilitated by government initiatives aimed at modernizing the agricultural sector. Many APAC countries are incorporating AI technologies into their agricultural policies to address challenges such as food security, labor shortages, and environmental sustainability. Additionally, the growing presence of AI-focused agricultural startups and increasing collaboration between technology companies and agricultural producers further accelerates the market’s growth. As a result, Asia-Pacific is expected to maintain its position as the fastest-growing region, contributing significantly to the overall expansion of the global AI in Agriculture Market.
The AI in Agriculture market is highly competitive, with leading companies focusing on innovation, strategic collaborations, and product launches. Firms such as IBM, Deere & Company, and Microsoft are at the forefront, offering solutions that integrate advanced AI capabilities with user-friendly platforms. Startups and niche players also contribute by addressing specific agricultural challenges, enhancing the diversity of solutions available.
As the market matures, the emphasis on affordability, scalability, and accessibility will shape competition, driving companies to deliver tailored solutions that cater to diverse agricultural needs. The landscape is poised for rapid evolution, promising a future where AI redefines agricultural practices globally.
Report Features |
Description |
Market Size (2023) |
USD 2.4 billion |
Forecasted Value (2030) |
USD 6.9 billion |
CAGR (2024 – 2030) |
16.2% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Agriculture Market By AI Technology (Machine Learning, Computer Vision Software, Robotics and Automation), By Application (Precision Farming, Crop Monitoring and Management, Livestock Management), By End User Industry (Agricultural Producers, Agribusinesses, Government and Research Bodies) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
BASF SE, John Deere, IBM Corporation, Corteva Agriscience, Trimble Inc., AG Leader Technology, Bayer CropScience, Microsoft Corporation, Agribotix (an Ag Leader company), Zymergen, Sentera, Raven Industries, Topcon Corporation, Taranis, The Climate Corporation |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Agriculture Market, by AI Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Computer Vision Software |
4.3. Robotics and Automation |
5. AI in Agriculture Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Precision Farming |
5.1.1. Variable Rate Technology |
5.1.2. Remote Sensing |
5.1.3. Crop Yield Prediction |
5.1.4. Disease and Pest Detection |
5.1.5. Weed Detection |
5.1.6. Others |
5.2. Crop Monitoring and Management |
5.2.1. Soil Monitoring |
5.2.2. Weather Forecasting |
5.2.3. Image Recognition for Crop Monitoring |
5.2.4. Others |
5.3. Livestock Management |
5.3.1. Health Monitoring |
5.3.2. Animal Tracking |
5.3.3. Others |
5.4. Others |
6. AI in Agriculture Market, by End User Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Agricultural Producers |
6.2. Agribusinesses |
6.3. Government and Research Bodies |
6.4. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Agriculture Market, by AI Technology |
7.2.7. North America AI in Agriculture Market, by Application |
7.2.8. North America AI in Agriculture Market, by End User Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Agriculture Market, by AI Technology |
7.2.9.1.2. US AI in Agriculture Market, by Application |
7.2.9.1.3. US AI in Agriculture Market, by End User Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. BASF SE |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. John Deere |
9.3. IBM Corporation |
9.4. Corteva Agriscience |
9.5. Trimble Inc. |
9.6. AG Leader Technology |
9.7. Bayer CropScience |
9.8. Microsoft Corporation |
9.9. Agribotix (an Ag Leader company) |
9.10. Zymergen |
9.11. Sentera |
9.12. Raven Industries |
9.13. Topcon Corporation |
9.14. Taranis |
9.15. The Climate Corporation |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Agriculture Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Agriculture Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Agriculture ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Agriculture Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.