Predictive Disease Analytics Market By Analytics Type (Descriptive Analytics, Predictive Analytics, Prescriptive Analytics), By Technology (Machine Learning, Artificial Intelligence, Big Data Analytics), By Application (Chronic Disease Management, Infectious Disease Prediction, Cancer Diagnosis and Treatment), By End-User (Healthcare Providers, Pharmaceutical Companies, Research Institutes), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Predictive Disease Analytics Market was valued at USD 3.9 billion in 2024-e and will surpass USD 6.8 billion by 2030; growing at a CAGR of 9.8% during 2025 - 2030.

The predictive disease analytics market is witnessing significant growth, driven by the increasing demand for advanced tools to predict and manage diseases more effectively. Predictive analytics involves the use of historical data, statistical algorithms, and machine learning techniques to forecast future health outcomes. In the healthcare sector, this technology is rapidly being adopted to identify disease patterns, predict outbreaks, and enhance patient care. With the growing prevalence of chronic diseases, such as diabetes, heart disease, and cancer, healthcare providers are increasingly leveraging predictive analytics to deliver more accurate diagnoses, optimize treatment plans, and improve overall patient outcomes. The ability to predict the onset of diseases before they become critical presents a transformative opportunity in preventive healthcare, making predictive disease analytics a key area of focus in the healthcare industry.

The market is further fueled by advancements in technology, particularly in artificial intelligence (AI), machine learning, and big data analytics, which enhance the precision and effectiveness of predictive models. The ability to analyze vast amounts of healthcare data, such as medical histories, genetic information, and lifestyle factors, allows healthcare providers to make informed decisions and deliver personalized care. Additionally, as governments and healthcare organizations prioritize proactive health management, the demand for predictive disease analytics solutions continues to rise. The growing adoption of these technologies is poised to reduce healthcare costs and improve the efficiency of disease management, driving substantial growth in the market.

Predictive Analytics Segment is Fastest Growing Owing to Proactive Disease Management

Predictive analytics is the fastest-growing segment in the predictive disease analytics market, owing to its ability to enable proactive disease management. By analyzing historical data and identifying patterns, predictive analytics can forecast the likelihood of disease onset or progression, allowing healthcare providers to intervene early. This proactive approach is particularly valuable in managing chronic diseases, where early detection and treatment can significantly reduce the risk of complications and improve patient outcomes. Predictive analytics models can predict everything from heart disease to cancer progression, offering personalized treatment plans that cater to an individual’s unique health profile.

The rise in chronic diseases worldwide has driven the demand for predictive analytics tools, as they offer healthcare providers the ability to manage these conditions more effectively. As healthcare systems shift from reactive to preventive models, predictive analytics has become a critical component of disease management. The integration of AI and machine learning further enhances the predictive capabilities of these tools, improving accuracy and efficiency. The increasing recognition of the value of early intervention and risk prediction ensures that predictive analytics will continue to be the fastest-growing segment in the market, helping healthcare providers optimize care delivery and reduce long-term healthcare costs.

Predictive Disease Analytics Market Size

Machine Learning Technology is Largest Owing to Ability to Process Complex Data

Machine learning is the largest technology segment in the predictive disease analytics market, largely due to its ability to process and analyze complex healthcare data. Machine learning algorithms can identify patterns in large datasets, allowing healthcare providers to predict disease trends and identify at-risk populations with high accuracy. These algorithms learn from historical data, continuously improving their predictions as they are exposed to more information. In healthcare, machine learning is applied across various disease types, from chronic conditions to infectious diseases, offering valuable insights into potential health risks and optimal treatment pathways.

Machine learning’s capability to handle big data and generate actionable insights has made it the most widely used technology in predictive disease analytics. It enables healthcare providers to deliver personalized care by predicting individual health outcomes based on factors such as genetic information, lifestyle, and medical history. The ability to automate and refine predictions over time has made machine learning an indispensable tool in modern healthcare, positioning it as the largest technology segment in the market. The growing demand for more accurate and reliable disease prediction models ensures that machine learning will remain a central technology in predictive disease analytics.

Chronic Disease Management Application is Largest Owing to Growing Global Burden

Chronic disease management is the largest application segment in the predictive disease analytics market, driven by the increasing global burden of chronic conditions such as diabetes, cardiovascular diseases, and respiratory disorders. These diseases often require long-term management and monitoring, making predictive analytics a valuable tool for healthcare providers to forecast disease progression, monitor treatment efficacy, and prevent complications. Predictive models can help healthcare professionals identify early warning signs and adjust treatment plans accordingly, improving patient outcomes and reducing hospitalizations. The ability to manage chronic diseases more effectively has become a key priority for healthcare systems worldwide, further driving the adoption of predictive disease analytics solutions.

With the aging population and the rise in lifestyle-related diseases, chronic disease management is expected to remain a primary focus for healthcare providers. Predictive disease analytics tools enable healthcare systems to allocate resources more efficiently by identifying patients who are at higher risk for disease progression. Additionally, these tools can reduce healthcare costs by preventing hospital readmissions and reducing the need for expensive emergency interventions. As a result, chronic disease management will continue to be the largest application area for predictive disease analytics, ensuring long-term growth in this segment of the market.

Healthcare Providers End-User is Largest Owing to Direct Patient Care Involvement

Healthcare providers are the largest end-users of predictive disease analytics, as they are directly involved in patient care and disease management. Healthcare providers, including hospitals, clinics, and primary care physicians, are adopting predictive analytics tools to improve diagnosis, personalize treatment plans, and monitor patient outcomes. Predictive disease analytics enable healthcare providers to deliver more accurate and timely interventions, improving patient care and reducing the risk of complications. By leveraging predictive models, healthcare providers can identify high-risk patients, optimize treatment strategies, and enhance overall healthcare delivery. The widespread adoption of electronic health records (EHRs) and integrated healthcare systems further facilitates the use of predictive analytics in clinical settings.

The increasing focus on data-driven decision-making and value-based care models is driving the adoption of predictive disease analytics among healthcare providers. As the healthcare industry embraces digital transformation, predictive analytics tools are becoming an essential part of everyday clinical practice. These tools enable healthcare providers to optimize resource allocation, reduce costs, and improve the overall efficiency of care delivery. As the demand for personalized healthcare continues to grow, healthcare providers will remain the largest end-user segment for predictive disease analytics, ensuring sustained market expansion.

North America Region is Largest Owing to Advanced Healthcare Infrastructure and Adoption of Technology

North America is the largest region in the predictive disease analytics market, primarily due to its advanced healthcare infrastructure and high rate of technology adoption. The United States, in particular, leads the market, with widespread use of electronic health records (EHRs), machine learning, and artificial intelligence in healthcare settings. The region’s healthcare system is well-equipped to integrate predictive disease analytics tools, and there is a growing emphasis on preventive care and data-driven decision-making. North American healthcare providers are increasingly turning to predictive analytics to manage chronic diseases, predict infectious disease outbreaks, and optimize treatment plans, contributing to the market’s expansion.

Additionally, North America benefits from strong regulatory support for healthcare technology and a favorable environment for innovation, with many leading companies in the field of predictive analytics based in the region. The region's high healthcare spending, along with its focus on improving patient outcomes and reducing healthcare costs, further supports the growth of predictive disease analytics. As healthcare systems in North America continue to adopt more sophisticated disease prediction models, the region will remain the largest market for predictive disease analytics.

Predictive Disease Analytics Market Size by Region 2030

Leading Companies and Competitive Landscape

Key players in the predictive disease analytics market include IBM Watson Health, SAS Institute Inc., Cerner Corporation, and McKesson Corporation, among others. These companies are at the forefront of developing predictive analytics solutions for the healthcare sector, leveraging technologies such as machine learning, AI, and big data analytics to enhance disease prediction, diagnosis, and management. The competitive landscape is characterized by significant investments in R&D and strategic partnerships, with companies aiming to expand their offerings and improve the precision of their analytics tools.

The market is highly competitive, with companies focusing on creating more accurate and scalable predictive models to address the growing demand for proactive healthcare solutions. Additionally, as the healthcare industry embraces digital transformation, there is a strong focus on integrating predictive analytics with other technologies such as EHRs, telemedicine, and patient monitoring systems. The increasing recognition of the value of predictive disease analytics in improving healthcare outcomes ensures that the competitive landscape will continue to evolve, with companies working to innovate and gain market share.

List of Leading Companies:

  • IBM
  • SAS Institute
  • Oracle
  • Microsoft Corporation
  • Siemens Healthineers
  • GE Healthcare
  • Philips Healthcare
  • Cerner Corporation
  • Medtronic
  • Allscripts Healthcare Solutions
  • Cognizant
  • Dell Technologies
  • Health Catalyst
  • Truven Health Analytics
  • Accenture

Recent Developments:

  • In December 2024, IBM launched a new AI-powered predictive analytics platform aimed at improving disease diagnosis accuracy.
  • In November 2024, GE Healthcare expanded its predictive analytics capabilities with a new cloud-based solution for managing chronic diseases.
  • In October 2024, Oracle partnered with several healthcare providers to enhance their predictive disease analytics solutions using big data technology.
  • In September 2024, Philips Healthcare introduced an AI-based tool for early detection of infectious diseases through predictive analytics.
  • In August 2024, Microsoft Corporation unveiled a new machine learning model aimed at improving cancer detection through predictive disease analytics.

Report Scope:

Report Features

Description

Market Size (2024-e)

USD XX billion

Forecasted Value (2030)

USD 3.9 billion

CAGR (2025 – 2030)

USD 6.8 billion

Base Year for Estimation

9.8%

Historic Year

2024-e

Forecast Period

2023

Report Coverage

2025 – 2030

Segments Covered

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Regional Analysis

Predictive Disease Analytics Market By Analytics Type (Descriptive Analytics, Predictive Analytics, Prescriptive Analytics), By Technology (Machine Learning, Artificial Intelligence, Big Data Analytics), By Application (Chronic Disease Management, Infectious Disease Prediction, Cancer Diagnosis and Treatment), By End-User (Healthcare Providers, Pharmaceutical Companies, Research Institutes)

Major Companies

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Customization Scope

IBM, SAS Institute, Oracle, Microsoft Corporation, Siemens Healthineers, GE Healthcare, Philips Healthcare, Cerner Corporation, Medtronic, Allscripts Healthcare Solutions, Cognizant, Dell Technologies, Health Catalyst, Truven Health Analytics, Accenture

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Predictive Disease Analytics Market, by Analytics Type (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Descriptive Analytics

   4.2. Predictive Analytics

   4.3. Prescriptive Analytics

5. Predictive Disease Analytics Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Machine Learning

   5.2. Artificial Intelligence

   5.3. Big Data Analytics

6. Predictive Disease Analytics Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Chronic Disease Management

   6.2. Infectious Disease Prediction

   6.3. Cancer Diagnosis and Treatment

7. Predictive Disease Analytics Market, by End-User (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Healthcare Providers

   7.2. Pharmaceutical Companies

   7.3. Research Institutes

8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America Predictive Disease Analytics Market, by Analytics Type

      8.2.7. North America Predictive Disease Analytics Market, by Technology

      8.2.8. North America Predictive Disease Analytics Market, by Application

      8.2.9. North America Predictive Disease Analytics Market, by End-User

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US Predictive Disease Analytics Market, by Analytics Type

               8.2.10.1.2. US Predictive Disease Analytics Market, by Technology

               8.2.10.1.3. US Predictive Disease Analytics Market, by Application

               8.2.10.1.4. US Predictive Disease Analytics Market, by End-User

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. IBM

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. SAS Institute

   10.3. Oracle

   10.4. Microsoft Corporation

   10.5. Siemens Healthineers

   10.6. GE Healthcare

   10.7. Philips Healthcare

   10.8. Cerner Corporation

   10.9. Medtronic

   10.10. Allscripts Healthcare Solutions

   10.11. Cognizant

   10.12. Dell Technologies

   10.13. Health Catalyst

   10.14. Truven Health Analytics

   10.15. Accenture

11. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Predictive Disease Analytics Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Predictive Disease Analytics Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -Predictive Disease Analytics Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports_1, journals, articles, and publications. Additionally, annual reports_1, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Predictive Disease Analytics Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -Predictive Disease Analytics Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.

  • United States+1
  • United Kingdom+44
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Swaziland+268
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358

I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options