No-Code AI Platforms Market By Platform Type (Cloud-Based, On-Premises), By Application (Business Intelligence, Customer Support, Data Automation), By Industry (BFSI (Banking, Financial Services, and Insurance), Healthcare, Retail, Manufacturing), By End-User (SMEs (Small and Medium Enterprises), Large Enterprises), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the No-Code AI Platforms Market was valued at USD 15.1 billion in 2024-e and will surpass USD 26.5 billion by 2030; growing at a CAGR of 9.8% during 2025 - 2030.

The no-code AI platforms market is experiencing rapid growth as businesses increasingly adopt artificial intelligence (AI) solutions without the need for specialized programming skills. These platforms enable users with limited technical expertise to develop and deploy AI models, empowering businesses to integrate AI into their operations more easily. The demand for no-code AI platforms has surged in recent years, owing to the growing need for automation, data-driven decision-making, and enhanced customer experiences across industries. These platforms are being used to streamline business processes, improve efficiency, and enable companies to leverage AI for various applications without relying on in-house data scientists or developers.

The rise of cloud-based solutions and the increasing availability of user-friendly, accessible platforms are further driving the market’s growth. As AI continues to evolve, no-code platforms are becoming crucial for businesses of all sizes, allowing them to stay competitive by leveraging the power of AI without the complexity of traditional coding and development. The ability to rapidly prototype, test, and deploy AI models is making no-code AI platforms highly attractive to businesses seeking to enhance operational efficiency, personalize customer experiences, and drive innovation.

Cloud-Based Platforms are Largest Owing to Scalability and Accessibility

Cloud-based no-code AI platforms are the largest segment in the market, driven by their scalability, accessibility, and cost-efficiency. Cloud-based platforms allow businesses to deploy AI solutions without the need for significant upfront investments in infrastructure or hardware, making them an ideal option for organizations of all sizes. These platforms offer high flexibility, enabling users to access and modify AI models from anywhere, reducing the barriers to adoption for smaller businesses and startups.

The scalability of cloud-based platforms is particularly advantageous for growing enterprises, as they can easily adjust their usage as their needs evolve. Additionally, the growing trend of remote work and the shift towards cloud computing have significantly contributed to the widespread adoption of cloud-based no-code AI platforms. These platforms offer a range of tools for various applications, such as customer support, business intelligence, and data automation, all of which can be deployed seamlessly in a cloud environment.

No-Code AI Platforms Market Size

Business Intelligence Application is Fastest Growing Owing to Data-Driven Decision Making

Business intelligence (BI) is the fastest growing application of no-code AI platforms, driven by the increasing need for organizations to harness their data for informed decision-making. No-code AI tools enable businesses to analyze vast amounts of data, identify trends, and generate actionable insights without requiring specialized knowledge of AI algorithms. The use of AI-powered BI platforms helps organizations streamline data analysis, improve operational efficiency, and make more accurate predictions based on real-time data.

As more businesses recognize the value of data-driven decision-making, the demand for no-code AI platforms in business intelligence is expected to continue growing. These platforms offer intuitive interfaces and pre-built templates, allowing users to create custom dashboards, run complex analytics, and generate reports without the need for advanced coding skills. The rapid growth of big data and the increasing focus on data democratization are further driving the adoption of no-code AI platforms in business intelligence applications.

Small and Medium Enterprises (SMEs) End-User Segment is Largest Owing to Accessibility and Affordability

Small and medium enterprises (SMEs) represent the largest end-user segment in the no-code AI platforms market, primarily due to the accessibility and affordability of these platforms. SMEs often face budget constraints and lack the technical resources to develop custom AI solutions in-house. No-code AI platforms provide a cost-effective alternative, allowing SMEs to leverage AI technologies without the need for specialized expertise. These platforms enable SMEs to automate processes, enhance customer service, and make data-driven decisions, which are crucial for competing with larger organizations.

The growing availability of cloud-based no-code platforms has made AI more accessible to SMEs, which can now utilize AI for applications such as business intelligence, customer support, and data automation. As SMEs continue to embrace digital transformation, the demand for no-code AI solutions is expected to increase, enabling them to streamline operations and drive innovation.

North America is Largest Region Owing to Advanced Technological Infrastructure

North America is the largest region in the no-code AI platforms market, owing to its advanced technological infrastructure, high adoption rate of digital technologies, and strong presence of key market players. The region is home to several leading technology companies and AI startups, which contribute to the rapid development and deployment of no-code AI platforms. Additionally, businesses across various industries, including healthcare, retail, and finance, are increasingly adopting no-code AI solutions to improve efficiency, enhance customer experiences, and drive innovation.

The region’s robust IT infrastructure and widespread internet connectivity are major factors facilitating the adoption of cloud-based platforms, which have become the preferred choice for organizations seeking to integrate AI capabilities. Furthermore, North America’s strong focus on innovation, research, and development, combined with government initiatives to support AI adoption, makes it the largest market for no-code AI platforms.

No-Code AI Platforms Market Size by Region 2030

Competitive Landscape

The no-code AI platforms market is highly competitive, with several key players leading the market, including companies such as DataRobot, H2O.ai, and Peltarion. These companies offer advanced no-code AI platforms that cater to various industries, providing businesses with intuitive interfaces and powerful AI capabilities. The competitive landscape is characterized by continuous innovation, as these companies work to enhance the functionality and usability of their platforms to meet the growing demand for AI-driven solutions.

Strategic partnerships, acquisitions, and collaborations are also common in the market, as companies look to expand their product offerings and strengthen their position in the rapidly growing market. Additionally, the growing number of startups entering the space is contributing to market fragmentation and intensifying competition. As the market continues to evolve, the key players are focusing on improving platform scalability, expanding industry-specific solutions, and enhancing customer support to differentiate themselves from competitors.

Recent Developments:

  • In December 2024, Google Cloud AI introduced new tools in its no-code platform to assist with predictive analytics and machine learning.
  • In November 2024, Microsoft Azure launched enhanced features for its no-code AI platform, focusing on small businesses and automation.
  • In October 2024, IBM Watson integrated new data automation features into its no-code AI platform for easier data management.
  • In September 2024, DataRobot expanded its no-code AI platform to include enhanced machine learning models for the retail industry.
  • In August 2024, Salesforce Einstein announced new no-code AI features to help businesses improve customer service with AI-powered virtual assistants.

List of Leading Companies:

  • Google Cloud AI
  • Microsoft Azure
  • IBM Watson
  • Salesforce Einstein
  • Peltarion
  • DataRobot
  • H2O.ai
  • RapidMiner
  • Bubble
  • AppSheet
  • BigML
  • Snips

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 15.1 billion

Forecasted Value (2030)

USD 26.5 billion

CAGR (2025 – 2030)

9.8%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

No-Code AI Platforms Market By Platform Type (Cloud-Based, On-Premises), By Application (Business Intelligence, Customer Support, Data Automation), By Industry (BFSI (Banking, Financial Services, and Insurance), Healthcare, Retail, Manufacturing), By End-User (SMEs (Small and Medium Enterprises), Large Enterprises)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

Google Cloud AI, Microsoft Azure, IBM Watson, Salesforce Einstein, Peltarion, DataRobot, H2O.ai, RapidMiner, Bubble, AppSheet, BigML, Snips, , ,

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. No-Code AI Platforms Market, by Platform Type (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Cloud-Based

   4.2. On-Premises

5. No-Code AI Platforms Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Business Intelligence

      5.1.1. Analytics Tools

      5.1.2. Predictive Analytics

   5.2. Customer Support

      5.2.1. Chatbots

      5.2.2. Virtual Assistants

   5.3. Data Automation

6. No-Code AI Platforms Market, by Industry (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. BFSI (Banking, Financial Services, and Insurance)

   6.2. Healthcare

   6.3. Retail

   6.4. Manufacturing

   6.5. Others

7. No-Code AI Platforms Market, by End-User (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. SMEs (Small and Medium Enterprises)

   7.2. Large Enterprises

8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America No-Code AI Platforms Market, by Platform Type

      8.2.7. North America No-Code AI Platforms Market, by Application

      8.2.8. North America No-Code AI Platforms Market, by Industry

      8.2.9. North America No-Code AI Platforms Market, by End-User

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US No-Code AI Platforms Market, by Platform Type

               8.2.10.1.2. US No-Code AI Platforms Market, by Application

               8.2.10.1.3. US No-Code AI Platforms Market, by Industry

               8.2.10.1.4. US No-Code AI Platforms Market, by End-User

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. Google Cloud AI

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Microsoft Azure

   10.3. IBM Watson

   10.4. Salesforce Einstein

   10.5. Peltarion

   10.6. DataRobot

   10.7. H2O.ai

   10.8. RapidMiner

   10.9. Bubble

   10.10. AppSheet

   10.11. BigML

   10.12. Snips

11. Appendix

A comprehensive market research approach was employed to gather and analyze data on the No-Code AI Platforms Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the No-Code AI Platforms Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the No-Code AI Platforms Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options