sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Logistics Robotics Market was valued at USD 11.4 billion in 2023 and will surpass USD 24.2 billion by 2030; growing at a CAGR of 11.4% during 2024 - 2030.
The logistics robotics market is rapidly transforming the way businesses manage supply chain operations and material handling processes. With the rise of automation technologies, logistics robotics solutions are revolutionizing industries by improving efficiency, reducing costs, and enhancing operational accuracy. These robotics systems are increasingly being employed in warehousing, distribution, and transportation sectors, enabling organizations to optimize inventory management and order fulfillment processes. Robotics in logistics utilizes various technologies like AI, IoT, and machine learning to perform tasks such as material handling, sorting, and inventory tracking.
As demand for faster and more efficient supply chains continues to grow, logistics robotics is set to play a pivotal role in shaping the future of logistics and warehousing. The market is driven by the need for automation to cope with labor shortages, increasing consumer expectations for quicker delivery times, and the complexity of managing large volumes of goods. With advancements in autonomous mobile robots (AMRs), automated guided vehicles (AGVs), and AI-based technologies, businesses are capitalizing on robotics to streamline operations and improve customer satisfaction.
Autonomous mobile robots (AMRs) are the fastest growing product type in the logistics robotics market, owing to their flexibility and versatility in various logistics applications. Unlike automated guided vehicles (AGVs), which typically follow fixed paths, AMRs are equipped with advanced sensors, AI, and navigation technologies that enable them to move independently and adapt to dynamic environments. This makes them ideal for tasks like material handling, order picking, and inventory management in warehouses and distribution centers.
AMRs are particularly beneficial in environments that require quick, autonomous movement, such as retail and manufacturing facilities. They can seamlessly navigate through changing floor plans and obstacles, and even communicate with other robots to optimize task execution. Their ability to perform tasks without the need for predefined paths allows businesses to improve throughput, reduce operational costs, and enhance the overall efficiency of logistics operations. As e-commerce growth accelerates and consumer demands for fast deliveries increase, the adoption of AMRs is expected to rise significantly in the coming years.
AI-based technology is the fastest growing segment in the logistics robotics market, as it allows for smarter and more efficient automation of logistics processes. AI-powered robots can make real-time decisions, learn from their surroundings, and continuously improve their performance, which greatly enhances the efficiency and accuracy of logistics operations. By utilizing machine learning algorithms, AI-based robotics systems can autonomously adjust their actions based on factors like traffic patterns, congestion, or changes in inventory levels.
In the logistics industry, AI-based robotics is particularly useful for tasks such as sorting packages, optimizing delivery routes, and managing inventory in real-time. The use of AI improves accuracy and reduces human error, which is critical in high-volume logistics operations. Furthermore, AI enables predictive maintenance, helping businesses avoid costly downtimes by alerting them to potential system failures before they occur. As AI technology continues to advance, its integration with logistics robotics will significantly enhance operational capabilities, making it the key driver of market growth.
The retail sector is the largest end-use industry for logistics robotics, driven by the growing demand for automation to meet the challenges of e-commerce and consumer expectations for fast deliveries. With the rise of online shopping, retailers are under pressure to improve supply chain efficiency, reduce delivery times, and manage high volumes of orders. Robotics solutions, particularly autonomous mobile robots (AMRs) and automated guided vehicles (AGVs), are being increasingly deployed to streamline inventory management, order fulfillment, and last-mile delivery operations in warehouses and distribution centers.
Retailers are using robotics to speed up the picking, packing, and sorting processes, ensuring that products are shipped out quickly and accurately. The ability to automate these repetitive tasks allows retailers to meet consumer expectations for faster order fulfillment, particularly during peak shopping seasons. As e-commerce continues to expand, the demand for logistics robotics in the retail industry is expected to grow, solidifying its position as the largest end-user of logistics robotics solutions.
North America is the largest region in the logistics robotics market, owing to the strong presence of key players in the robotics and automation sectors, as well as the region’s advanced infrastructure and high adoption rates of emerging technologies. The United States, in particular, has witnessed significant investments in robotics systems, especially in industries like retail, manufacturing, and logistics. The rapid growth of e-commerce and the increasing demand for faster and more efficient supply chains are driving the adoption of logistics robotics in the region.
In addition to technological advancements, the region’s skilled workforce and high levels of automation adoption are contributing to the growing demand for logistics robotics solutions. Retailers and logistics companies in North America are increasingly turning to robotics to optimize their supply chains, reduce operational costs, and improve delivery times. As the region continues to lead in technological innovation, North America is expected to maintain its dominance in the logistics robotics market, with further growth anticipated across industries like healthcare, automotive, and manufacturing.
The logistics robotics market is highly competitive, with several established players and new entrants innovating to capture market share. Key players in the market include companies like ABB, KUKA, and Fanuc, which offer a wide range of robotics solutions for logistics and supply chain automation. These companies provide robots equipped with advanced sensors, AI, and machine learning capabilities to enhance the flexibility and efficiency of logistics operations.
In addition to large, established companies, several startups and emerging players are making significant strides in the logistics robotics space. For instance, companies like Mobile Industrial Robots (MIR) and Geek+ are gaining traction with their autonomous mobile robots (AMRs) and automated guided vehicles (AGVs) that are tailored to meet the needs of modern warehouses and distribution centers. As competition intensifies, players in the logistics robotics market are focusing on continuous innovation, expanding their product offerings, and forming strategic partnerships to stay ahead of the curve. The growing demand for automation and robotics in the logistics industry presents significant opportunities for both established players and new entrants to expand their market presence and drive future growth.
Report Scope:
Report Features |
Description |
Market Size (2023) |
USD 11.4 billion |
Forecasted Value (2030) |
USD 24.2 billion |
CAGR (2024 – 2030) |
11.4% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Logistics Robotics Market By Product Type (Autonomous Mobile Robots (AMRs), Automated Guided Vehicles (AGVs)), By Technology (AI-based, IoT-based), By Application (Order Fulfillment, Intralogistics), By End User (Retail, Manufacturing, Logistics) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
KUKA AG, ABB Ltd., Dematic (KION Group), Fanuc Corporation, GreyOrange, Boston Dynamics, Clearpath Robotics, JBT Corporation, Locus Robotics, Murata Machinery, OMRON Corporation, Amazon Robotics, Vanderlande Industries, Autonomous Solutions Inc., Swisslog Logistics |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Logistics Robotics Market, by Product Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Autonomous Mobile Robots (AMRs) |
4.1.1. Indoor Robots |
4.1.2. Outdoor Robots |
4.2. Automated Guided Vehicles (AGVs) |
4.2.1. Tow Robots |
4.2.2. Unit Load Transport Robots |
4.2.3. Others |
5. Logistics Robotics Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. AI-based |
5.1.1. Computer Vision |
5.1.2. Machine Learning |
5.2. IoT-based |
5.2.1. Sensors |
5.2.2. Cloud Computing |
5.3. Others |
6. Logistics Robotics Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Order Fulfillment |
6.1.1. Picking & Sorting |
6.1.2. Packaging |
6.2. Intralogistics |
6.2.1. Material Handling |
6.2.2. Inventory Management |
6.3. Others |
7. Logistics Robotics Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Retail |
7.1.1. E-commerce |
7.1.2. Warehousing |
7.2. Manufacturing |
7.2.1. Automotive |
7.2.2. Electronics |
7.3. Logistics |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Logistics Robotics Market, by Product Type |
8.2.7. North America Logistics Robotics Market, by Technology |
8.2.8. North America Logistics Robotics Market, by Application |
8.2.9. North America Logistics Robotics Market, by End User |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Logistics Robotics Market, by Product Type |
8.2.10.1.2. US Logistics Robotics Market, by Technology |
8.2.10.1.3. US Logistics Robotics Market, by Application |
8.2.10.1.4. US Logistics Robotics Market, by End User |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. KUKA AG |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. ABB Ltd. |
10.3. Dematic (KION Group) |
10.4. Fanuc Corporation |
10.5. GreyOrange |
10.6. Boston Dynamics |
10.7. Clearpath Robotics |
10.8. JBT Corporation |
10.9. Locus Robotics |
10.10. Murata Machinery |
10.11. OMRON Corporation |
10.12. Amazon Robotics |
10.13. Vanderlande Industries |
10.14. Autonomous Solutions Inc. |
10.15. Swisslog Logistics |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Logistics Robotics Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Logistics Robotics Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Logistics Robotics ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Logistics Robotics Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.