Healthcare Fraud Detection Market By Component (Software, Services), By Delivery Mode (On-Premise, Cloud-Based, Hybrid), By Application (Insurance Claim Fraud Detection, Identity Theft Protection, Payment Fraud Detection, Healthcare Provider Fraud), By End User (Healthcare Payers, Government Agencies, Hospitals & Clinics), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Healthcare Fraud Detection Market was valued at USD 4.4 billion in 2024-e and will surpass USD 7.2 billion by 2030; growing at a CAGR of 8.6% during 2025 - 2030.

The healthcare fraud detection market is witnessing substantial growth, driven by increasing fraudulent activities in the healthcare industry and the rising need for efficient fraud prevention mechanisms. With healthcare fraud leading to significant financial losses for insurers, government agencies, and healthcare providers, there is a growing demand for advanced fraud detection solutions that leverage artificial intelligence (AI), machine learning (ML), and big data analytics. These technologies enhance fraud detection capabilities by identifying suspicious patterns and preventing unauthorized claims in real time.

Regulatory mandates and government initiatives aimed at curbing healthcare fraud are further propelling market expansion. The shift toward digital healthcare transactions and electronic health records (EHRs) has increased the risk of cyber threats and fraudulent activities, making robust fraud detection systems a necessity. As the healthcare sector continues to embrace digital transformation, investments in fraud detection solutions are expected to rise significantly.

Software is Largest Component Owing to Advanced AI-Powered Fraud Detection Solutions

Software dominates the healthcare fraud detection market due to the growing adoption of AI-driven analytics and automated fraud detection tools. Advanced software solutions integrate predictive analytics, natural language processing (NLP), and blockchain technology to enhance fraud detection accuracy and efficiency.

These solutions help healthcare payers and providers detect anomalies in claims processing, identify fraudulent patterns, and mitigate financial risks. The increasing sophistication of fraud schemes has driven continuous advancements in fraud detection software, making it the most essential component in combating healthcare fraud. As AI and data-driven decision-making continue to evolve, software solutions will remain at the forefront of healthcare fraud prevention.

 Healthcare Fraud Detection Market   Size

Cloud-Based Solutions are Fastest Growing Delivery Mode Owing to Scalability and Real-Time Fraud Monitoring

Cloud-based fraud detection solutions are experiencing the fastest growth in the market, driven by their scalability, cost-effectiveness, and real-time fraud monitoring capabilities. The adoption of cloud computing in healthcare has enabled seamless data integration, allowing fraud detection software to analyze vast datasets efficiently.

Cloud-based platforms provide healthcare organizations with flexible deployment options, enabling them to scale fraud detection capabilities without the need for extensive IT infrastructure. Additionally, cloud solutions facilitate real-time collaboration between healthcare payers, providers, and government agencies, improving fraud prevention efforts. As healthcare organizations continue to shift toward cloud-based technologies, this segment is expected to expand rapidly.

Insurance Claim Fraud Detection is Largest Application Owing to High Volume of Fraudulent Claims

Insurance claim fraud detection leads the application segment due to the increasing number of fraudulent claims filed globally. Fraudulent activities, including billing for unnecessary procedures, duplicate claims, and falsified medical histories, contribute to significant financial losses for insurers and healthcare systems.

Advanced fraud detection tools use predictive analytics and AI to detect irregularities in insurance claims, reducing financial risks and improving claim processing efficiency. With the rising complexity of healthcare reimbursement models and fraudulent billing schemes, insurance companies and payers are prioritizing fraud detection technologies to safeguard their financial interests. This segment is expected to maintain its dominance as fraud prevention becomes a top priority for the insurance industry.

Healthcare Payers are Largest End Users Owing to Growing Need for Fraud Prevention and Cost Containment

Healthcare payers represent the largest end-user segment, driven by the increasing need to minimize financial losses caused by fraudulent claims. Insurance companies and government health programs rely on fraud detection solutions to identify suspicious claims, verify patient identities, and prevent financial exploitation.

With the implementation of stricter regulations and compliance requirements, healthcare payers are investing in advanced fraud detection systems to enhance claim accuracy and reduce false reimbursements. The integration of AI and machine learning in payer fraud detection workflows has significantly improved fraud prevention strategies, making healthcare payers the primary adopters of fraud detection technologies.

North America is Largest Region Owing to High Healthcare Fraud Incidence and Strong Regulatory Framework

North America leads the healthcare fraud detection market due to the high prevalence of healthcare fraud, strict regulatory policies, and significant investments in fraud prevention technologies. The region is home to major health insurance providers and government agencies such as Medicare and Medicaid, which continuously implement fraud detection initiatives to combat financial losses.

The U.S. government has introduced several regulatory frameworks, including the Health Insurance Portability and Accountability Act (HIPAA) and the False Claims Act, to address healthcare fraud. Additionally, technological advancements in AI-driven fraud analytics and cloud-based solutions have strengthened fraud detection efforts across North America. With rising healthcare expenditures and increasing fraud risks, the demand for fraud detection solutions is expected to remain strong in the region.

 Healthcare Fraud Detection Market   Size by Region 2030

Leading Companies and Competitive Landscape

The healthcare fraud detection market is highly competitive, with key players such as IBM Corporation, Optum, SAS Institute, LexisNexis Risk Solutions, and FICO leading the industry. Companies are focusing on AI-powered fraud analytics, blockchain integration, and cloud-based solutions to enhance fraud prevention capabilities.

Strategic collaborations between healthcare organizations, government agencies, and technology providers are shaping the competitive landscape. Additionally, investments in real-time fraud monitoring and predictive analytics are driving innovation in fraud detection solutions. As fraudulent activities continue to evolve, companies that offer advanced, AI-driven fraud prevention solutions will gain a competitive edge in the market.

List of Leading Companies:

  • IBM Corporation
  • SAS Institute Inc.
  • Optum, Inc.
  • McKesson Corporation
  • Change Healthcare
  • LexisNexis Risk Solutions
  • Wipro Limited
  • Conduent Inc.
  • Cotiviti, Inc.
  • HCL Technologies Ltd.
  • EXL Service Holdings, Inc.
  • DXC Technology Company
  • FraudLens, Inc.
  • CGI Inc.
  • Pondera Solutions

Recent Developments:

  • In January 2025, IBM launched an AI-powered fraud detection system for healthcare insurers.
  • In December 2024, Optum announced an advanced predictive analytics tool for claim fraud prevention.
  • In November 2024, LexisNexis Risk Solutions expanded its fraud analytics platform with machine learning enhancements.
  • In October 2024, SAS Institute introduced a blockchain-based fraud detection solution for healthcare payments.
  • In September 2024, McKesson partnered with a cybersecurity firm to enhance medical identity theft protection.

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 4.4 billion

Forecasted Value (2030)

USD 7.2 billion

CAGR (2025 – 2030)

8.6%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Healthcare Fraud Detection Market By Component (Software, Services), By Delivery Mode (On-Premise, Cloud-Based, Hybrid), By Application (Insurance Claim Fraud Detection, Identity Theft Protection, Payment Fraud Detection, Healthcare Provider Fraud), By End User (Healthcare Payers, Government Agencies, Hospitals & Clinics)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

IBM Corporation, SAS Institute Inc., Optum, Inc., McKesson Corporation, Change Healthcare, LexisNexis Risk Solutions, Wipro Limited, Conduent Inc., Cotiviti, Inc., HCL Technologies Ltd., EXL Service Holdings, Inc., DXC Technology Company, FraudLens, Inc., CGI Inc., Pondera Solutions

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

Frequently Asked Questions

The Healthcare Fraud Detection Market was valued at USD 4.4 billion in 2024-e and is expected to grow at a CAGR of over 8.6% from 2025 to 2030.

Increasing healthcare fraud cases, rising adoption of AI-based fraud detection, and stricter regulatory policies.

Billing fraud, insurance claim fraud, identity theft, and upcoding are common fraudulent activities.

Insurance companies, government agencies, hospitals, and healthcare providers implement fraud detection tools.

AI-driven predictive analytics, blockchain integration, and automated claims monitoring are key innovations.

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Healthcare Fraud Detection Market, by Component (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Software

      4.1.1. Fraud Analytics Software

      4.1.2. Identity Verification Software

      4.1.3. Payment Integrity Solutions

      4.1.4. Others

   4.2. Services

      4.2.1. Managed Services

      4.2.2. Professional Services

      4.2.3. Others

5. Healthcare Fraud Detection Market, by Delivery Mode (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. On-Premise

   5.2. Cloud-Based

   5.3. Hybrid

   5.4. Others

6. Healthcare Fraud Detection Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Insurance Claim Fraud Detection

   6.2. Identity Theft Protection

   6.3. Payment Fraud Detection

   6.4. Healthcare Provider Fraud

   6.5. Others

7. Healthcare Fraud Detection Market, by End User (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Healthcare Payers

   7.2. Government Agencies

   7.3. Hospitals & Clinics

   7.4. Others

8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America Healthcare Fraud Detection Market, by Component

      8.2.7. North America Healthcare Fraud Detection Market, by Delivery Mode

      8.2.8. North America Healthcare Fraud Detection Market, by Application

      8.2.9. North America Healthcare Fraud Detection Market, by End User

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US Healthcare Fraud Detection Market, by Component

               8.2.10.1.2. US Healthcare Fraud Detection Market, by Delivery Mode

               8.2.10.1.3. US Healthcare Fraud Detection Market, by Application

               8.2.10.1.4. US Healthcare Fraud Detection Market, by End User

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. IBM Corporation

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. SAS Institute Inc.

   10.3. Optum, Inc.

   10.4. McKesson Corporation

   10.5. Change Healthcare

   10.6. LexisNexis Risk Solutions

   10.7. Wipro Limited

   10.8. Conduent Inc.

   10.9. Cotiviti, Inc.

   10.10. HCL Technologies Ltd.

   10.11. EXL Service Holdings, Inc.

   10.12. DXC Technology Company

   10.13. FraudLens, Inc.

   10.14. CGI Inc.

   10.15. Pondera Solutions

11. Appendix

 

A comprehensive market research approach was employed to gather and analyze data on the Healthcare Fraud Detection Market . In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Healthcare Fraud Detection Market . The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Healthcare Fraud Detection Market . These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options