As per Intent Market Research, the Generative AI In Supply Chain Market was valued at USD 2.3 billion in 2024-e and will surpass USD 55.7 billion by 2030; growing at a CAGR of 57.5% during 2025 - 2030.
The generative AI in supply chain market is poised for significant growth, driven by the increasing need for optimization, automation, and predictive capabilities within supply chain operations. Leveraging advanced AI technologies such as machine learning, natural language processing, and computer vision, companies are using generative AI to streamline processes, reduce costs, and improve efficiency across various supply chain functions. As businesses face growing pressure to meet customer demands and manage logistics challenges, generative AI is emerging as a key enabler of smarter, more agile supply chains. Several market segments are driving this growth, with certain subsegments leading the charge in terms of adoption and innovation.
Technology Type: Machine Learning is Leading the Charge
Machine learning (ML) is the largest subsegment within the generative AI in supply chain market, as it provides substantial advantages in areas such as demand forecasting, inventory management, and supply chain optimization. Machine learning algorithms enable businesses to analyze vast amounts of data, predict trends, and make informed decisions in real-time. The ability of machine learning to continuously learn from historical data and improve over time makes it a cornerstone of AI applications in supply chains.
The adoption of machine learning is increasing across industries due to its ability to drive efficiency, reduce human error, and improve decision-making processes. Companies are leveraging ML to forecast demand more accurately, optimize inventory levels, and predict supply chain disruptions. As machine learning algorithms evolve, their potential to transform supply chain management continues to expand, making it a critical technology in the pursuit of smarter, data-driven operations.
Deployment Type: Cloud-Based Solutions Are Gaining Traction
Cloud-based deployment is the fastest-growing subsegment in the generative AI in supply chain market, driven by the increasing need for flexibility, scalability, and cost-efficiency. Cloud-based solutions enable businesses to access advanced AI tools and services without the need for significant upfront investment in on-premise infrastructure. This model allows for easier integration, seamless updates, and global accessibility, making it particularly appealing to businesses looking to enhance their supply chain capabilities.
As the adoption of cloud solutions accelerates, companies can leverage real-time data analytics, improve collaboration across locations, and scale their operations with minimal effort. Cloud-based AI platforms are allowing businesses to stay agile, particularly in industries where market conditions are volatile and unpredictable. The scalability and flexibility offered by cloud solutions are key drivers in the rapid adoption of generative AI technologies across the supply chain sector.
Application: Demand Forecasting is Key to Supply Chain Success
Demand forecasting is the largest application of generative AI in supply chains, as it directly impacts inventory management, procurement, and overall operational efficiency. Accurate demand forecasting allows businesses to align their inventory levels with customer needs, reducing excess stock while ensuring that products are available when needed. Generative AI models enhance this process by analyzing historical sales data, market trends, and other relevant factors to predict future demand with greater precision.
The integration of generative AI into demand forecasting processes has become a game-changer for companies looking to optimize their supply chain operations. By improving forecasting accuracy, businesses can better manage production schedules, reduce stockouts, and avoid overstocking. The increasing reliance on AI-driven demand forecasting is expected to continue, as retailers and manufacturers seek to improve their supply chain efficiency and responsiveness to market changes.
End-use Industry: Retail is Leading the Adoption of Generative AI
The retail industry is the largest end-use segment for generative AI in the supply chain market, as retailers are at the forefront of using AI to optimize inventory, logistics, and customer experience. With the rapid growth of e-commerce and omnichannel retailing, generative AI is helping retailers manage complex supply chains and meet the growing demand for fast, personalized service. AI-powered solutions are enabling retailers to predict consumer demand, improve order fulfillment, and manage logistics with greater efficiency.
In retail, AI-driven tools are being utilized for everything from personalized marketing to supply chain optimization, enabling businesses to stay competitive in a rapidly evolving market. Generative AI is not only helping retailers improve operational efficiency but also enhancing the customer experience by ensuring that the right products are available at the right time. As the retail industry continues to grow and evolve, generative AI will remain a vital tool for optimizing supply chain operations.
Solution Type: Software Solutions Are Dominating the Market
Software solutions are the dominant subsegment within the generative AI in supply chain market, accounting for a large portion of the market share. AI-powered software platforms offer a wide range of functionalities, including predictive analytics, inventory optimization, demand forecasting, and supplier management. These platforms enable businesses to automate supply chain operations, enhance decision-making processes, and reduce the reliance on manual labor.
The adoption of AI software solutions is particularly strong among large enterprises that have the resources to invest in sophisticated AI tools. These software solutions are designed to integrate with existing systems, providing businesses with the flexibility to scale operations and improve efficiency. As the demand for AI-driven supply chain optimization grows, software solutions will continue to lead the way in driving the digital transformation of supply chain management.
Business Size: Large Enterprises Are Leading Adoption
Large enterprises are the leading adopters of generative AI in the supply chain market, owing to their scale, resources, and the complexity of their supply chain operations. These organizations are leveraging AI to streamline their global supply chains, optimize inventory, reduce operational costs, and improve customer satisfaction. With substantial budgets for technology investments, large enterprises are able to implement advanced AI solutions that deliver significant returns on investment.
The ability to process vast amounts of data and manage complex supply chain networks gives large enterprises a competitive advantage in adopting generative AI. These organizations are using AI to automate repetitive tasks, improve decision-making, and drive innovation within their supply chains. While small and medium-sized enterprises (SMEs) are also adopting AI solutions, the large enterprise segment remains the dominant force in the generative AI supply chain market.
Region: North America is the Largest Market for Generative AI in Supply Chains
North America holds the largest market share for generative AI in supply chains, driven by the region's strong technological infrastructure, presence of leading AI solution providers, and the widespread adoption of AI technologies across industries. The United States, in particular, is home to many of the world’s largest companies in retail, manufacturing, and logistics, which are early adopters of generative AI solutions. These companies are investing heavily in AI to optimize their supply chain operations, improve efficiency, and gain a competitive edge.
North America's robust digital ecosystem, along with the increasing demand for real-time data analytics and AI-driven decision-making tools, has made it the largest region for AI adoption in supply chain management. As more businesses in the region embrace AI technologies, the demand for generative AI solutions will continue to rise, solidifying North America's position as a leader in the global market.
Competitive Landscape and Leading Companies
The generative AI in supply chain market is highly competitive, with several global technology companies leading the charge in providing AI-powered solutions. Key players include IBM, Microsoft, Google Cloud, Oracle, and SAP, all of which offer advanced AI platforms that help businesses optimize their supply chains. These companies are continually enhancing their AI capabilities through research and development, acquisitions, and partnerships with industry leaders.
The competitive landscape is also marked by the growing presence of specialized AI firms and software providers such as Blue Yonder, Infor, and Accenture, which offer tailored solutions for supply chain optimization and logistics management. As the market continues to evolve, the competition will intensify, with businesses looking to differentiate themselves through innovative AI tools, customer-centric solutions, and strategic collaborations
Recent Developments:
- IBM Corporation announced a new AI-powered supply chain platform, leveraging generative AI to improve forecasting accuracy and inventory management for retailers.
- Microsoft Corporation introduced an AI-driven supply chain solution for the automotive industry, enabling predictive maintenance and streamlined operations.
- SAP SE expanded its cloud-based supply chain offerings, integrating generative AI tools to enhance procurement automation and supplier management.
- Amazon Web Services (AWS) launched a new AI platform designed to optimize logistics and transportation, using generative AI for real-time route optimization.
- Accenture partnered with a major global retailer to implement a generative AI solution for supply chain optimization, improving demand forecasting and reducing operational costs
List of Leading Companies:
- IBM Corporation
- Microsoft Corporation
- Google Cloud
- Oracle Corporation
- SAP SE
- Amazon Web Services (AWS)
- Accenture
- Cisco Systems
- Blue Yonder (JDA Software)
- Infor
- Siemens AG
- Intel Corporation
- TCS (Tata Consultancy Services)
- Cognizant Technology Solutions
- Deloitte
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 2.3 Billion |
Forecasted Value (2030) |
USD 55.7 Billion |
CAGR (2025 – 2030) |
57.5% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Generative AI in Supply Chain Market By Technology Type (Machine Learning, Natural Language Processing, Computer Vision, Generative Adversarial Networks), By Deployment Type (On-premise, Cloud-based), By Application (Demand Forecasting, Inventory Management, Supply Chain Optimization, Logistics and Transportation Management, Supplier Selection and Risk Management, Procurement Automation), By End-use Industry (Retail, Automotive, Manufacturing, Healthcare, Food and Beverage, Consumer Electronics), By Solution Type (Software, Services), By Business Size (Large Enterprises, SMEs) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, Microsoft Corporation, Google Cloud, Oracle Corporation, SAP SE, Amazon Web Services (AWS), Accenture, Cisco Systems, Blue Yonder (JDA Software), Infor, Siemens AG, Intel Corporation, TCS (Tata Consultancy Services), Cognizant Technology Solutions, Deloitte |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Generative AI In Supply Chain Market, by Technology Type (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing |
4.3. Computer Vision |
4.4. Generative Adversarial Networks (GANs) |
5. Generative AI In Supply Chain Market, by Deployment Type (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. On-premise |
5.2. Cloud-based |
6. Generative AI In Supply Chain Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Demand Forecasting |
6.2. Inventory Management |
6.3. Supply Chain Optimization |
6.4. Logistics and Transportation Management |
6.5. Supplier Selection and Risk Management |
6.6. Procurement Automation |
7. Generative AI In Supply Chain Market, by End-use Industry (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. Retail |
7.2. Automotive |
7.3. Manufacturing |
7.4. Healthcare |
7.5. Food and Beverage |
7.6. Consumer Electronics |
8. Generative AI In Supply Chain Market, by Solution Type (Market Size & Forecast: USD Million, 2023 – 2030) |
8.1. Software |
8.2. Services |
9. Generative AI In Supply Chain Market, by Business Size (Market Size & Forecast: USD Million, 2023 – 2030) |
9.1. Large Enterprises |
9.2. SMEs (Small and Medium Enterprises) |
10. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
10.1. Regional Overview |
10.2. North America |
10.2.1. Regional Trends & Growth Drivers |
10.2.2. Barriers & Challenges |
10.2.3. Opportunities |
10.2.4. Factor Impact Analysis |
10.2.5. Technology Trends |
10.2.6. North America Generative AI In Supply Chain Market, by Technology Type |
10.2.7. North America Generative AI In Supply Chain Market, by Deployment Type |
10.2.8. North America Generative AI In Supply Chain Market, by Application |
10.2.9. North America Generative AI In Supply Chain Market, by End-use Industry |
10.2.10. North America Generative AI In Supply Chain Market, by Solution Type |
10.2.11. North America Generative AI In Supply Chain Market, by Business Size |
10.2.12. By Country |
10.2.12.1. US |
10.2.12.1.1. US Generative AI In Supply Chain Market, by Technology Type |
10.2.12.1.2. US Generative AI In Supply Chain Market, by Deployment Type |
10.2.12.1.3. US Generative AI In Supply Chain Market, by Application |
10.2.12.1.4. US Generative AI In Supply Chain Market, by End-use Industry |
10.2.12.1.5. US Generative AI In Supply Chain Market, by Solution Type |
10.2.12.1.6. US Generative AI In Supply Chain Market, by Business Size |
10.2.12.2. Canada |
10.2.12.3. Mexico |
*Similar segmentation will be provided for each region and country |
10.3. Europe |
10.4. Asia-Pacific |
10.5. Latin America |
10.6. Middle East & Africa |
11. Competitive Landscape |
11.1. Overview of the Key Players |
11.2. Competitive Ecosystem |
11.2.1. Level of Fragmentation |
11.2.2. Market Consolidation |
11.2.3. Product Innovation |
11.3. Company Share Analysis |
11.4. Company Benchmarking Matrix |
11.4.1. Strategic Overview |
11.4.2. Product Innovations |
11.5. Start-up Ecosystem |
11.6. Strategic Competitive Insights/ Customer Imperatives |
11.7. ESG Matrix/ Sustainability Matrix |
11.8. Manufacturing Network |
11.8.1. Locations |
11.8.2. Supply Chain and Logistics |
11.8.3. Product Flexibility/Customization |
11.8.4. Digital Transformation and Connectivity |
11.8.5. Environmental and Regulatory Compliance |
11.9. Technology Readiness Level Matrix |
11.10. Technology Maturity Curve |
11.11. Buying Criteria |
12. Company Profiles |
12.1. IBM Corporation |
12.1.1. Company Overview |
12.1.2. Company Financials |
12.1.3. Product/Service Portfolio |
12.1.4. Recent Developments |
12.1.5. IMR Analysis |
*Similar information will be provided for other companies |
12.2. Microsoft Corporation |
12.3. Google Cloud |
12.4. Oracle Corporation |
12.5. SAP SE |
12.6. Amazon Web Services (AWS) |
12.7. Accenture |
12.8. Cisco Systems |
12.9. Blue Yonder (JDA Software) |
12.10. Infor |
12.11. Siemens AG |
12.12. Intel Corporation |
12.13. TCS (Tata Consultancy Services) |
12.14. Cognizant Technology Solutions |
12.15. Deloitte |
13. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Generative AI in Supply Chain Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Generative AI in Supply Chain Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Generative AI in Supply Chain Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.
NA