As per Intent Market Research, the Generative AI In Personalized Medicine Market was valued at USD 1.7 billion in 2024-e and will surpass USD 34.8 billion by 2030; growing at a CAGR of 54.4% during 2025 - 2030.
Generative AI is transforming personalized medicine by enabling more accurate diagnostics, predictive treatment methods, and personalized healthcare solutions. The ability of AI to analyze vast amounts of genetic, clinical, and treatment data offers healthcare providers the tools to deliver precision medicine with better patient outcomes. As this market rapidly evolves, different technologies, applications, and industries are integrating AI to create more effective and personalized healthcare systems. The demand for AI in medicine is growing due to the increasing focus on personalized treatment approaches that cater to the unique genetic makeup and health conditions of individuals.
Machine Learning Segment is Largest Owing to Its Wide Range of Applications
Machine learning (ML) is the largest and most widely adopted technology in the generative AI in personalized medicine market. ML algorithms have proven to be highly effective in processing vast amounts of healthcare data, recognizing patterns, and making predictions. This technology is used in genetic testing, drug discovery, and patient risk stratification, allowing healthcare providers to make more informed decisions. Machine learning’s ability to learn from data and improve predictions over time is a key factor driving its dominance in the market. It allows for the identification of potential health risks and suggests personalized treatment options based on historical and real-time patient data, enhancing the precision of medical care.
The ongoing advancements in machine learning technology are helping to improve drug discovery pipelines and genomic data analysis, leading to more efficient and effective treatment options. As a result, ML continues to be at the forefront of generative AI in personalized medicine, facilitating faster, more accurate diagnoses and treatment protocols. Moreover, machine learning models are increasingly being integrated into healthcare systems for continuous patient monitoring, further driving market expansion and adoption.
Genetic Testing Application is Fastest Growing Due to Rising Focus on Precision Medicine
Genetic testing is the fastest-growing application within the generative AI in personalized medicine market. The rapid advancements in genomics and biotechnology have significantly enhanced the potential of genetic testing in identifying genetic mutations, predispositions to diseases, and responses to specific drugs. With the growing focus on precision medicine, genetic testing is becoming a crucial tool in providing tailored healthcare solutions that meet the unique genetic profiles of patients. AI-driven algorithms are helping in the analysis of complex genomic data, improving the accuracy and speed of genetic tests while reducing errors.
As genetic testing becomes more advanced and accessible, patients are increasingly opting for personalized treatment options based on their genetic information. The combination of AI with genetic testing allows healthcare providers to predict the likelihood of diseases and create customized treatment plans, offering a significant advantage in improving patient outcomes. As the cost of genomic sequencing continues to fall and the availability of AI tools increases, genetic testing will continue to be a key growth driver in the market for personalized medicine.
Pharmaceutical Companies Lead in Generative AI Adoption
Pharmaceutical companies are the largest end-user industry in the generative AI in personalized medicine market. These companies are leveraging AI technologies to streamline drug discovery, optimize clinical trials, and personalize drug formulations based on genetic information. The ability to develop drugs tailored to specific patient populations is transforming the pharmaceutical industry. AI-powered drug discovery platforms are enabling pharmaceutical companies to identify potential drug candidates faster and more accurately, thus reducing development costs and time-to-market for new drugs.
Pharmaceutical companies are also increasingly using generative AI to identify biomarkers, predict patient responses to drugs, and develop personalized treatment regimens. As personalized medicine becomes more prevalent, pharmaceutical companies are collaborating with biotech firms and healthcare providers to ensure that their drug pipelines are aligned with the latest advances in genomics and AI-driven healthcare. This collaboration further enhances the adoption of AI technologies in the drug development process and supports the industry's ongoing shift toward precision medicine.
North America is Largest Region, Driven by Advanced Healthcare Infrastructure
North America remains the largest region in the generative AI in personalized medicine market, owing to its well-established healthcare infrastructure, significant investments in AI research, and a high adoption rate of advanced technologies. The United States, in particular, has become a global leader in healthcare innovation, with numerous research institutions, pharmaceutical companies, and biotech firms investing heavily in generative AI solutions for personalized medicine. Additionally, government initiatives and funding for healthcare technology innovations, such as the National Institutes of Health (NIH), have further accelerated AI integration in healthcare.
The demand for personalized medicine is growing rapidly in North America, as consumers seek more targeted treatment options based on their genetic makeup. The region’s healthcare system is increasingly shifting toward value-based care models, where personalized treatments and preventive care are prioritized. This trend is expected to continue, driving further investment in AI-driven healthcare solutions and ensuring North America’s dominance in the market.
Leading Companies and Competitive Landscape
Leading companies in the generative AI in personalized medicine market are continuously innovating and expanding their offerings to cater to the growing demand for AI-driven healthcare solutions. Companies such as IBM Watson Health, Tempus Labs, Merck & Co., and Siemens Healthineers are at the forefront of AI integration in personalized medicine. These companies are leveraging machine learning, natural language processing, and deep learning algorithms to develop tools that help healthcare providers deliver customized treatments based on genetic and clinical data.
The competitive landscape of this market is highly dynamic, with a mix of established pharmaceutical, biotechnology, and healthcare technology companies, alongside innovative startups focusing on AI-driven drug discovery, diagnostics, and treatment personalization. Partnerships and collaborations between AI technology providers, pharmaceutical companies, and healthcare institutions are becoming increasingly common as stakeholders seek to enhance their capabilities and offer more effective personalized medicine solutions. These strategic collaborations are expected to foster further growth in the market as the industry continues to embrace AI-powered solutions for improved patient care and outcomes.
Conclusion
The generative AI in personalized medicine market is poised for significant growth, driven by technological advancements in machine learning and the increasing adoption of AI in healthcare applications like genetic testing and drug discovery. North America leads the market in terms of adoption and infrastructure, with pharmaceutical companies playing a critical role in shaping the future of personalized medicine. As more stakeholders in healthcare, biotechnology, and pharmaceuticals invest in AI technologies, the market for generative AI in personalized medicine will continue to evolve, offering improved patient care, faster drug development, and more accurate treatment options. Leading companies in this space are pushing the boundaries of AI in healthcare, helping to pave the way for a more personalized and data-driven future in medicine
Recent Developments:
- Tempus Labs launched an AI-powered platform for oncology that integrates clinical and molecular data to assist in personalized treatment plans, enhancing precision medicine practices.
- Siemens Healthineers announced a collaboration with biotech firms to leverage AI for more efficient drug discovery, aiming to provide better-tailored treatments for patients.
- Merck & Co. has invested in AI-based diagnostic tools for personalized cancer treatment, incorporating machine learning models to predict drug efficacy based on genetic markers.
- Philips Healthcare unveiled a new AI-driven imaging system designed to personalize medical treatments for patients with complex conditions like heart disease, by leveraging machine learning for data analysis.
- Accenture partnered with leading research institutions to develop new AI algorithms that predict personalized treatment pathways in rare diseases, helping to provide tailored solutions to complex cases.
List of Leading Companies:
- IBM Corporation
- Google LLC
- Microsoft Corporation
- Siemens Healthineers
- Accenture
- Tempus Labs
- Merck & Co., Inc.
- Philips Healthcare
- Johnson & Johnson
- GE Healthcare
- Oracle Corporation
- Illumina Inc.
- Medtronic PLC
- PathAI
- Tempus
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 1.7 Billion |
Forecasted Value (2030) |
USD 34.8 Billion |
CAGR (2025 – 2030) |
54.4% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Generative AI in Medicine Market By Technology (Machine Learning, Deep Learning, Natural Language Processing (NLP), Reinforcement Learning, Generative Adversarial Networks (GANs)), By Application (Genetic Testing, Biomarker Discovery, Treatment Personalization, Disease Prediction, Drug Response Prediction), By End-User Industry (Pharmaceutical Companies, Biotechnology Firms, Healthcare Providers, Research Institutions, Medical Device Manufacturers, Healthcare Technology Companies) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, Google LLC, Microsoft Corporation, Siemens Healthineers, Accenture, Tempus Labs, Merck & Co., Inc., Philips Healthcare, Johnson & Johnson, GE Healthcare, Oracle Corporation, Illumina Inc., Medtronic PLC, PathAI, Tempus |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Generative AI In Personalized Medicine Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Machine Learning |
4.2. Deep Learning |
4.3. Natural Language Processing (NLP) |
4.4. Reinforcement Learning |
4.5. Generative Adversarial Networks (GANs) |
4.6. Others |
5. Generative AI In Personalized Medicine Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. Genetic Testing |
5.2. Biomarker Discovery |
5.3. Treatment Personalization |
5.4. Disease Prediction |
5.5. Drug Response Prediction |
5.6. Others |
6. Generative AI In Personalized Medicine Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Pharmaceutical Companies |
6.2. Biotechnology Firms |
6.3. Healthcare Providers |
6.4. Research Institutions |
6.5. Medical Device Manufacturers |
6.6. Healthcare Technology Companies |
6.7. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America Generative AI In Personalized Medicine Market, by Technology |
7.2.7. North America Generative AI In Personalized Medicine Market, by Application |
7.2.8. By Country |
7.2.8.1. US |
7.2.8.1.1. US Generative AI In Personalized Medicine Market, by Technology |
7.2.8.1.2. US Generative AI In Personalized Medicine Market, by Application |
7.2.8.2. Canada |
7.2.8.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. IBM Corporation |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. Google LLC |
9.3. Microsoft Corporation |
9.4. Siemens Healthineers |
9.5. Accenture |
9.6. Tempus Labs |
9.7. Merck & Co., Inc. |
9.8. Philips Healthcare |
9.9. Johnson & Johnson |
9.10. GE Healthcare |
9.11. Oracle Corporation |
9.12. Illumina Inc. |
9.13. Medtronic PLC |
9.14. PathAI |
9.15. Tempus |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Generative AI In Personalized Medicine Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Generative AI In Personalized Medicine Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Generative AI In Personalized Medicine Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.
NA