Generative AI in Logistics Market by Technology (Machine Learning, Deep Learning, Natural Language Processing (NLP), Reinforcement Learning, Computer Vision), Application (Supply Chain Optimization, Inventory Management, Route Optimization, Demand Forecasting, Warehouse Automation, Freight Management), End-User Industry (E-Commerce, Retail, Manufacturing, Transportation, Food & Beverage, Healthcare) – Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Generative AI In Logistics Market was valued at USD 1.5 billion in 2024-e and will surpass USD 23.6 billion by 2030; growing at a CAGR of 48.6% during 2025 - 2030.

The Generative AI in logistics market is transforming how businesses manage supply chains, optimize routes, and automate inventory and warehouse operations. With the increasing need for efficiency and cost reduction in logistics, AI technologies are becoming integral to reshaping the industry's landscape. Innovations such as real-time data analysis, predictive forecasting, and smart warehousing are helping logistics players maintain a competitive edge.

Machine Learning Segment Is Largest Owing to Versatile Applications Across Logistics

Machine learning is the largest segment in the logistics technology space due to its wide-ranging applications, from predictive analytics to demand forecasting. It enables logistics companies to analyze historical data, anticipate future trends, and optimize supply chain efficiency.

Adoption of machine learning is particularly high in areas such as fraud detection, demand planning, and route optimization. By integrating machine learning with Internet of Things (IoT) devices, businesses can also achieve real-time monitoring of fleet and inventory, ensuring operational efficiency and reducing delays.

Route Optimization Application Is Fastest Growing Due to Increased E-Commerce Demand

The route optimization subsegment is witnessing rapid growth, driven by the surging demand from the e-commerce and retail sectors. As online shopping grows, the need for efficient last-mile delivery has become critical for customer satisfaction.

Generative AI-powered route optimization tools use data from weather patterns, traffic conditions, and delivery schedules to identify the most efficient delivery routes. This not only reduces fuel consumption but also ensures faster deliveries, making it indispensable for logistics providers catering to the e-commerce boom.

E-Commerce Industry Emerges as Largest End-User Owing to High Dependence on Logistics Efficiency

E-commerce has emerged as the largest end-user industry for generative AI in logistics, driven by the sector's reliance on timely deliveries and seamless supply chain management. AI-powered solutions help e-commerce players manage inventory, forecast demand, and optimize delivery schedules.

With features like real-time inventory tracking and predictive analytics, AI tools ensure e-commerce platforms can respond to fluctuating consumer demands swiftly. Additionally, warehouse automation powered by AI has enabled companies to handle high order volumes during peak seasons efficiently.

Asia-Pacific Is Fastest Growing Region Due to Expanding E-Commerce and Manufacturing Sectors

The Asia-Pacific region is experiencing the fastest growth in the generative AI in logistics market, fueled by robust e-commerce growth and increasing manufacturing activities. Countries like China, India, and Japan are heavily investing in AI technologies to enhance their supply chain operations.

The region's dynamic logistics ecosystem benefits from AI applications, such as demand forecasting and route optimization. Furthermore, government initiatives supporting smart logistics and digital transformation are encouraging companies to adopt generative AI solutions on a larger scale.

Competitive Landscape: Leading Companies Paving the Way

The competitive landscape of the generative AI in logistics market is characterized by the presence of technology giants like Amazon Web Services, Google, and Microsoft, alongside specialized logistics solution providers like DHL and FedEx. These companies are investing heavily in AI-driven innovations to maintain their market positions.

Collaborations and acquisitions are also shaping the industry. For instance, recent partnerships between logistics firms and AI startups are accelerating the deployment of advanced solutions. With a strong focus on R&D, leading players aim to address the complexities of global supply chains and enhance efficiency through cutting-edge AI technologies

Recent Developments:

  • DHL announced new AI-driven solutions to optimize warehouse operations, reducing turnaround times by 30%.
  • FedEx collaborates with NVIDIA to deploy AI algorithms for real-time route adjustments, boosting delivery efficiency.
  • AWS unveiled a toolkit designed to empower startups with generative AI capabilities tailored for logistics and supply chain management.
  • UPS completed the acquisition of a startup specializing in AI for demand forecasting to strengthen its logistics planning capabilities.
  • IBM introduced an AI-based platform providing comprehensive visibility and analytics across the logistics value chain.

List of Leading Companies:

  • Amazon Web Services (AWS)
  • Microsoft Corporation
  • Google LLC
  • IBM Corporation
  • SAP SE
  • Oracle Corporation
  • NVIDIA Corporation
  • DHL Supply Chain
  • FedEx Corporation
  • UPS (United Parcel Service)
  • Siemens AG
  • Zebra Technologies Corporation
  • Blue Yonder (JDA Software)
  • Manhattan Associates
  • C.H. Robinson

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 1.5 Billion

Forecasted Value (2030)

USD 23.6 Billion

CAGR (2025 – 2030)

48.6%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Generative AI in Logistics Market by Technology (Machine Learning, Deep Learning, Natural Language Processing (NLP), Reinforcement Learning, Computer Vision), Application (Supply Chain Optimization, Inventory Management, Route Optimization, Demand Forecasting, Warehouse Automation, Freight Management), End-User Industry (E-Commerce, Retail, Manufacturing, Transportation, Food & Beverage, Healthcare)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

Amazon Web Services (AWS), Microsoft Corporation, Google LLC, IBM Corporation, SAP SE, Oracle Corporation, NVIDIA Corporation, DHL Supply Chain, FedEx Corporation, UPS (United Parcel Service), Siemens AG, Zebra Technologies Corporation, Blue Yonder (JDA Software), Manhattan Associates, C.H. Robinson

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Generative AI In Logistics Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Machine Learning

   4.2. Deep Learning

   4.3. Natural Language Processing (NLP)

   4.4. Reinforcement Learning

   4.5. Computer Vision

   4.6. Others

5. Generative AI In Logistics Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Supply Chain Optimization

   5.2. Inventory Management

   5.3. Route Optimization

   5.4. Demand Forecasting

   5.5. Warehouse Automation

   5.6. Freight Management

   5.7. Others

6. Generative AI In Logistics Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. E-Commerce

   6.2. Retail

   6.3. Manufacturing

   6.4. Transportation

   6.5. Food & Beverage

   6.6. Healthcare

   6.7. Others

7. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Regional Overview

   7.2. North America

      7.2.1. Regional Trends & Growth Drivers

      7.2.2. Barriers & Challenges

      7.2.3. Opportunities

      7.2.4. Factor Impact Analysis

      7.2.5. Technology Trends

      7.2.6. North America Generative AI In Logistics Market, by Technology

      7.2.7. North America Generative AI In Logistics Market, by Application

      7.2.8. North America Generative AI In Logistics Market, by End-User Industry

      7.2.9. By Country

         7.2.9.1. US

               7.2.9.1.1. US Generative AI In Logistics Market, by Technology

               7.2.9.1.2. US Generative AI In Logistics Market, by Application

               7.2.9.1.3. US Generative AI In Logistics Market, by End-User Industry

         7.2.9.2. Canada

         7.2.9.3. Mexico

    *Similar segmentation will be provided for each region and country

   7.3. Europe

   7.4. Asia-Pacific

   7.5. Latin America

   7.6. Middle East & Africa

8. Competitive Landscape

   8.1. Overview of the Key Players

   8.2. Competitive Ecosystem

      8.2.1. Level of Fragmentation

      8.2.2. Market Consolidation

      8.2.3. Product Innovation

   8.3. Company Share Analysis

   8.4. Company Benchmarking Matrix

      8.4.1. Strategic Overview

      8.4.2. Product Innovations

   8.5. Start-up Ecosystem

   8.6. Strategic Competitive Insights/ Customer Imperatives

   8.7. ESG Matrix/ Sustainability Matrix

   8.8. Manufacturing Network

      8.8.1. Locations

      8.8.2. Supply Chain and Logistics

      8.8.3. Product Flexibility/Customization

      8.8.4. Digital Transformation and Connectivity

      8.8.5. Environmental and Regulatory Compliance

   8.9. Technology Readiness Level Matrix

   8.10. Technology Maturity Curve

   8.11. Buying Criteria

9. Company Profiles

   9.1. Amazon Web Services (AWS)

      9.1.1. Company Overview

      9.1.2. Company Financials

      9.1.3. Product/Service Portfolio

      9.1.4. Recent Developments

      9.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   9.2. Microsoft Corporation

   9.3. Google LLC

   9.4. IBM Corporation

   9.5. SAP SE

   9.6. Oracle Corporation

   9.7. NVIDIA Corporation

   9.8. DHL Supply Chain

   9.9. FedEx Corporation

   9.10. UPS (United Parcel Service)

   9.11. Siemens AG

   9.12. Zebra Technologies Corporation

   9.13. Blue Yonder (JDA Software)

   9.14. Manhattan Associates

   9.15. C.H. Robinson

10. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Generative AI in Logistics Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Generative AI in Logistics Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Generative AI in Logistics Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options