Generative AI in Industrial Design Market By Technology (Machine Learning, Deep Learning, Generative Adversarial Networks (GANs), Natural Language Processing (NLP)), By Application (Product Design, Prototyping, Virtual Simulation & Testing, Manufacturing Process Optimization, CAD Automation), By End-User Industry (Automotive, Aerospace, Consumer Electronics, Industrial Manufacturing, Architecture & Construction), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Generative AI In Industrial Design Market was valued at USD 0.9 billion in 2024-e and will surpass USD 13.5 billion by 2030; growing at a CAGR of 46.7% during 2025 - 2030.

The Generative AI in Industrial Design Market is rapidly transforming industries by automating and enhancing design processes. By leveraging advanced AI algorithms, businesses can create innovative designs with fewer resources and shorter timelines. Technologies such as Machine Learning (ML), Deep Learning (DL), and Generative Adversarial Networks (GANs) are revolutionizing how products are conceptualized, tested, and brought to market. As industries like automotive, aerospace, and consumer electronics continue to adopt these solutions, generative AI is becoming indispensable for companies aiming to stay competitive. This article explores key growth segments within this market, highlighting the fastest-growing subsegments and the regions leading this shift.

Machine Learning Segment Is Largest Owing to Its Broad Adoption

Among the various technologies used in industrial design, Machine Learning (ML) stands out as the largest and most widely adopted. ML algorithms help industrial designers automate tasks such as pattern recognition, data analysis, and optimization of designs. This technology is integrated into design platforms, offering enhanced efficiency and better decision-making capabilities for engineers. Companies leverage ML to improve product features and reduce development costs, making it the preferred choice for product design and prototyping across industries. Its ability to learn from historical design data and adapt to new inputs has positioned ML as the backbone of generative AI in industrial design.

In industrial design, ML is particularly useful in fields like automotive and consumer electronics, where innovation and precision are paramount. The ability to rapidly test different design iterations and predict performance outcomes with minimal human intervention is driving its broad use. As design complexity increases, ML models can process and analyze vast amounts of data, uncovering insights that would be difficult for human designers to achieve alone. This technology is not only boosting productivity but also enabling companies to deliver more customized and optimized products at a faster pace.

Product Design Application Is Fastest Growing Due to Increased Demand for Customization

Among the various applications of generative AI in industrial design, product design is experiencing the fastest growth. As consumer demands shift toward more personalized and innovative products, companies are seeking ways to accelerate the design process while maintaining high levels of customization. Generative AI-powered design tools allow for the creation of complex, unique designs that traditional design methods may not be able to produce in the same timeframe or cost. These tools use advanced algorithms to generate multiple design alternatives based on specific requirements, helping companies identify the most efficient and feasible solutions for their products.

The growing demand for customized products in sectors such as consumer electronics and automotive is driving the need for faster and more efficient design solutions. For instance, in the automotive industry, AI-driven product design tools help companies create bespoke car models with improved aesthetics and performance features. As product design complexity increases, generative AI’s ability to deliver precise, optimized designs with less input and fewer iterations is becoming a game-changer for manufacturers, pushing the growth of this subsegment.

Automotive Industry Is Largest End-User Owing to High Demand for Innovative Designs

The automotive industry is the largest end-user of generative AI in industrial design, owing to its significant focus on innovation, efficiency, and cost reduction. As automotive manufacturers strive to stay ahead in a competitive market, AI-driven design tools offer them a way to quickly prototype, test, and modify designs while ensuring top-tier quality and performance. These tools are being used in the design of vehicle components, structures, and even entire cars, helping to streamline production processes and reduce the time it takes to bring a new model to market. Additionally, generative AI assists in creating lightweight, fuel-efficient designs that are essential in meeting environmental standards.

With the increasing adoption of electric vehicles (EVs) and the integration of autonomous technologies, the automotive industry is turning to generative AI to improve design efficiency. As these vehicles become more technologically advanced, automakers are using AI to optimize designs for performance, safety, and consumer experience. The automotive sector’s ongoing push for innovation in design is expected to drive sustained growth in the adoption of generative AI technologies.

North America Is the Largest Region Driven by Strong Technological Infrastructure

North America stands as the largest region for generative AI in industrial design, largely driven by its strong technological infrastructure, access to capital, and advanced industrial capabilities. The United States, in particular, is home to a number of leading companies such as Autodesk, Siemens, and PTC, which are at the forefront of AI integration in industrial design. Additionally, the region benefits from a highly skilled workforce and significant investments in AI research and development, making it a global hub for innovation. Companies in the automotive, aerospace, and consumer electronics industries are increasingly adopting AI-driven solutions to remain competitive in a rapidly evolving market.

The North American market is also being propelled by the region’s emphasis on sustainability and efficiency in design. As environmental regulations become stricter, industries are turning to generative AI to optimize product designs and manufacturing processes to reduce waste, energy consumption, and carbon footprints. As a result, the market for generative AI in industrial design is expected to grow significantly in North America, supported by favorable government policies, technological advancements, and a robust manufacturing base.

Competitive Landscape: Key Players Driving Innovation

The competitive landscape of the Generative AI in Industrial Design Market is highly dynamic, with several key players leading the charge in technological innovation. Autodesk, Siemens, and PTC are prominent names in the market, offering AI-powered tools that streamline design and manufacturing processes. These companies focus on enhancing their product portfolios with cutting-edge technologies like Machine Learning and Generative Adversarial Networks (GANs) to provide solutions that address the growing demand for rapid prototyping, product customization, and performance optimization.

The competition is further intensifying as NVIDIA and Intel also expand their influence, providing AI hardware solutions that support generative design applications. Startups and emerging players are also contributing to the market’s growth, particularly by offering specialized tools for automotive and aerospace sectors. As the demand for AI-driven design continues to increase, companies will need to invest in R&D, form strategic partnerships, and acquire new technologies to maintain their competitive edge in the market.

Recent Developments:

  • Autodesk has partnered with NVIDIA to integrate generative AI tools into its AutoCAD software, enhancing its capabilities in product design and simulation.
  • Siemens recently launched a generative design tool within its Solid Edge software, providing manufacturers with optimized solutions for additive manufacturing.
  • PTC announced the acquisition of Onshape, a cloud-based CAD platform, to further integrate AI-driven design tools and enhance product development capabilities.
  • Bentley Systems introduced a new AI-powered design tool for infrastructure projects, allowing designers to leverage generative algorithms for optimized layouts and planning.
  • Intel is developing an AI platform specifically tailored for industrial design, aiming to accelerate product innovation and automate repetitive design processes in manufacturing.

List of Leading Companies:

  • Autodesk, Inc.
  • Dassault Systèmes SE
  • Siemens AG
  • PTC Inc.
  • NVIDIA Corporation
  • Intel Corporation
  • Bentley Systems
  • Altair Engineering, Inc.
  • ANSYS, Inc.
  • General Electric (GE)
  • Hexagon AB
  • BASF SE
  • Zuken Inc.
  • CureMetrix Technologies, Inc.
  • OpenAI

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 0.9 Billion

Forecasted Value (2030)

USD 13.5 Billion

CAGR (2025 – 2030)

46.7%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Generative AI in Industrial Design Market By Technology (Machine Learning, Deep Learning, Generative Adversarial Networks (GANs), Natural Language Processing (NLP)), By Application (Product Design, Prototyping, Virtual Simulation & Testing, Manufacturing Process Optimization, CAD Automation), By End-User Industry (Automotive, Aerospace, Consumer Electronics, Industrial Manufacturing, Architecture & Construction)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

Autodesk, Inc., Dassault Systèmes SE, Siemens AG, PTC Inc., NVIDIA Corporation, Intel Corporation, Bentley Systems, Altair Engineering, Inc., ANSYS, Inc., General Electric (GE), Hexagon AB, BASF SE, Zuken Inc., CureMetrix Technologies, Inc., OpenAI

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Generative AI In Industrial Design Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Machine Learning

   4.2. Deep Learning

   4.3. Generative Adversarial Networks (GANs)

   4.4. Natural Language Processing (NLP)

   4.5. Others

5. Generative AI In Industrial Design Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Product Design

   5.2. Prototyping

   5.3. Virtual Simulation & Testing

   5.4. Manufacturing Process Optimization

   5.5. CAD Automation

   5.6. Others

6. Generative AI In Industrial Design Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Automotive

   6.2. Aerospace

   6.3. Consumer Electronics

   6.4. Industrial Manufacturing

   6.5. Architecture & Construction

   6.6. Others

7. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Regional Overview

   7.2. North America

      7.2.1. Regional Trends & Growth Drivers

      7.2.2. Barriers & Challenges

      7.2.3. Opportunities

      7.2.4. Factor Impact Analysis

      7.2.5. Technology Trends

      7.2.6. North America Generative AI In Industrial Design Market, by Technology

      7.2.7. North America Generative AI In Industrial Design Market, by Application

      7.2.8. North America Generative AI In Industrial Design Market, by End-User Industry

      7.2.9. By Country

         7.2.9.1. US

               7.2.9.1.1. US Generative AI In Industrial Design Market, by Technology

               7.2.9.1.2. US Generative AI In Industrial Design Market, by Application

               7.2.9.1.3. US Generative AI In Industrial Design Market, by End-User Industry

         7.2.9.2. Canada

         7.2.9.3. Mexico

    *Similar segmentation will be provided for each region and country

   7.3. Europe

   7.4. Asia-Pacific

   7.5. Latin America

   7.6. Middle East & Africa

8. Competitive Landscape

   8.1. Overview of the Key Players

   8.2. Competitive Ecosystem

      8.2.1. Level of Fragmentation

      8.2.2. Market Consolidation

      8.2.3. Product Innovation

   8.3. Company Share Analysis

   8.4. Company Benchmarking Matrix

      8.4.1. Strategic Overview

      8.4.2. Product Innovations

   8.5. Start-up Ecosystem

   8.6. Strategic Competitive Insights/ Customer Imperatives

   8.7. ESG Matrix/ Sustainability Matrix

   8.8. Manufacturing Network

      8.8.1. Locations

      8.8.2. Supply Chain and Logistics

      8.8.3. Product Flexibility/Customization

      8.8.4. Digital Transformation and Connectivity

      8.8.5. Environmental and Regulatory Compliance

   8.9. Technology Readiness Level Matrix

   8.10. Technology Maturity Curve

   8.11. Buying Criteria

9. Company Profiles

   9.1. Autodesk, Inc.

      9.1.1. Company Overview

      9.1.2. Company Financials

      9.1.3. Product/Service Portfolio

      9.1.4. Recent Developments

      9.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   9.2. Dassault Systèmes SE

   9.3. Siemens AG

   9.4. PTC Inc.

   9.5. NVIDIA Corporation

   9.6. Intel Corporation

   9.7. Bentley Systems

   9.8. Altair Engineering, Inc.

   9.9. ANSYS, Inc.

   9.10. General Electric (GE)

   9.11. Hexagon AB

   9.12. BASF SE

   9.13. Zuken Inc.

   9.14. CureMetrix Technologies, Inc.

   9.15. OpenAI

10. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Generative AI in Industrial Design Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Generative AI in Industrial Design Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Generative AI in Industrial Design Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options