Generative AI in Biology Market by Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), by Application (Drug Discovery, Disease Diagnosis, Personalized Medicine, Genetic Research, Synthetic Biology, Healthcare Data Management), by End-User (Biotech Companies, Pharmaceutical Companies, Healthcare Providers, Research Institutes, Academic Institutions), by Deployment Mode (Cloud-based, On-premise), and by Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Generative AI In Biology Market was valued at USD 0.1 billion in 2024-e and will surpass USD 0.3 billion by 2030; growing at a CAGR of 19.5% during 2025 - 2030.

The Generative AI in Biology market is experiencing a surge in demand, driven by the increasing need for automation in drug discovery, disease diagnosis, and personalized medicine. AI technologies, especially machine learning (ML) and deep learning (DL), are revolutionizing the way biological and healthcare data is analyzed, making it possible to accelerate research processes, improve accuracy, and reduce costs. As these technologies evolve, their applications are expanding across various sectors, including biotech, pharmaceuticals, and healthcare. With the promise of transforming patient care and research, generative AI is poised to unlock new possibilities in biology and healthcare.

Machine Learning Segment Is Largest Owing to Its Application in Drug Discovery

Among the various technologies used in generative AI, Machine Learning (ML) dominates the market due to its extensive use in drug discovery. ML algorithms analyze vast datasets, helping researchers identify potential drug candidates and predict their efficacy. This ability to uncover hidden patterns in biological data and quickly test various compounds makes machine learning a critical tool for pharmaceutical companies and biotech firms. The ML approach significantly reduces the time and costs associated with traditional drug discovery methods, making it the technology of choice for many organizations.

ML is also instrumental in automating repetitive tasks, such as data analysis and pattern recognition, which traditionally required significant manual effort. With its ability to learn from historical data and continuously improve predictions, ML is expected to remain the largest segment in the generative AI in biology market. The rapid adoption of ML-driven platforms for drug development and the increasing emphasis on precision medicine further reinforce its dominance in this market.

Drug Discovery Application Is Fastest Growing Due to AI's Potential to Transform Research

The Drug Discovery application is the fastest growing within the generative AI in biology market. AI-driven drug discovery platforms leverage vast amounts of biological and chemical data to identify new drug candidates and predict their interactions within the human body. This application has gained significant traction as pharmaceutical companies and biotech firms seek to improve the efficiency of their research processes and reduce the time-to-market for new drugs. Generative AI allows researchers to simulate interactions between molecules, predict therapeutic efficacy, and identify potential side effects before testing on humans, providing substantial benefits for drug development.

The ability of AI to process and analyze large datasets has made it indispensable for drug discovery, enabling the identification of novel compounds and biomarkers. Furthermore, AI-powered platforms can design molecules with specific properties, further streamlining the drug development pipeline. As more pharmaceutical companies integrate generative AI into their research frameworks, the demand for AI-driven drug discovery solutions is expected to rise, making it the fastest-growing application in this sector.

Biotech Companies Are the Largest End-User of Generative AI in Biology

Biotech companies represent the largest end-user group in the generative AI in biology market. These companies are heavily reliant on AI technologies to accelerate their research and development processes, particularly in areas such as drug discovery, genetic research, and personalized medicine. By integrating AI into their workflows, biotech firms can efficiently analyze biological data, identify key genetic markers, and design better therapeutic strategies. The use of generative AI allows them to enhance their ability to create groundbreaking treatments and therapies, positioning these companies at the forefront of the biotechnology industry.

AI's role in genetic research and synthetic biology further drives its adoption by biotech companies. With the increasing complexity of biological systems, biotech companies need advanced technologies to decode complex data sets and discover new insights. Generative AI offers the ability to simulate biological processes, predict molecular behavior, and identify potential treatment options, making it an essential tool for biotech companies looking to stay competitive in the rapidly evolving biological research landscape.

Cloud-Based Deployment Mode Is Predicted to Grow Fastest Due to Scalability and Flexibility

The Cloud-based deployment mode is expected to grow the fastest in the generative AI in biology market. With the increasing volume of biological data being generated, cloud-based solutions offer scalability and flexibility that on-premise systems cannot match. Cloud platforms allow organizations to store and process large datasets without the need for extensive infrastructure investments. Additionally, cloud-based solutions enable seamless collaboration between research teams globally, making it easier to share data and insights in real-time.

Cloud-based platforms also provide the computational power necessary for running complex AI models, offering a cost-effective solution for small and medium-sized enterprises (SMEs) in the biotech and pharmaceutical sectors. As more companies seek to take advantage of these benefits, the cloud-based deployment model is expected to dominate the market in the coming years, providing a foundation for AI-driven advancements in biology.

North America Is the Largest Region Owing to Strong Investment in AI and Biotechnology

North America is the largest region in the generative AI in biology market, driven by strong investments in AI research and biotechnology. The United States, in particular, is a global leader in AI innovation, with numerous AI startups and established companies leveraging cutting-edge technologies to drive advancements in biological research. Additionally, the presence of leading pharmaceutical companies and biotech firms in North America further accelerates the adoption of generative AI in drug discovery, disease diagnosis, and personalized medicine.

Government initiatives and funding for AI research in healthcare and biotechnology have also played a significant role in propelling the growth of the generative AI market in North America. The region's robust healthcare infrastructure, along with the increasing demand for precision medicine, ensures that North America will continue to dominate the market for generative AI in biology.

Competitive Landscape: Leading Companies and Market Dynamics

The generative AI in biology market is highly competitive, with a mix of established players and innovative startups driving technological advancements. Leading companies such as IBM Watson Health, Google DeepMind, Microsoft, and NVIDIA are at the forefront of AI research, leveraging their expertise in machine learning and deep learning to develop AI-driven solutions for biological research. These companies collaborate with pharmaceutical and biotech firms to offer AI-powered platforms that can accelerate drug discovery, genetic research, and precision medicine.

In addition to the big tech giants, startups such as Insilico Medicine, Atomwise, and Exscientia are making significant strides in AI-driven drug discovery and personalized medicine. These companies are focusing on niche areas such as synthetic biology, disease diagnosis, and healthcare data management, offering specialized solutions to cater to specific market needs. The competitive landscape is characterized by strategic partnerships, collaborations, and acquisitions, as companies aim to expand their capabilities and enhance their market position in this rapidly evolving industry.

 

Recent Developments:

  • IBM Watson Health has partnered with Pfizer to use AI models for accelerating drug development, particularly in oncology treatments.
  • Google DeepMind’s AlphaFold AI model has made significant progress in predicting protein folding, offering insights crucial for drug discovery and disease research.
  • Tempus, a leader in AI-driven precision medicine, raised $200 million to expand its healthcare data analytics platform, targeting personalized cancer treatments.
  • Recursion Pharmaceuticals acquired Vividion Therapeutics to enhance its AI-driven drug discovery platform and expand its portfolio in rare diseases.
  • Exscientia's AI-designed drug has received regulatory approval in Japan, marking a significant milestone in the use of AI for commercial drug development.

List of Leading Companies:

  • IBM Watson Health
  • Google DeepMind
  • Microsoft
  • NVIDIA Corporation
  • Insilico Medicine
  • Atomwise
  • BenevolentAI
  • Tempus
  • BioAge Labs
  • Exscientia
  • Schrödinger
  • Recursion Pharmaceuticals
  • Verge Genomics
  • Arctoris
  • Cyclica

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 0.1 Billion

Forecasted Value (2030)

USD 0.3 Billion

CAGR (2025 – 2030)

19.5%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Generative AI in Biology Market by Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), by Application (Drug Discovery, Disease Diagnosis, Personalized Medicine, Genetic Research, Synthetic Biology, Healthcare Data Management), by End-User (Biotech Companies, Pharmaceutical Companies, Healthcare Providers, Research Institutes, Academic Institutions), by Deployment Mode (Cloud-based, On-premise)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

IBM Watson Health, Google DeepMind, Microsoft, NVIDIA Corporation, Insilico Medicine, Atomwise, BenevolentAI, Tempus, BioAge Labs, Exscientia, Schrödinger, Recursion Pharmaceuticals, Verge Genomics, Arctoris, Cyclica

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Generative AI In Biology Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Machine Learning

   4.2. Deep Learning

   4.3. Natural Language Processing (NLP)

   4.4. Computer Vision

5. Generative AI In Biology Market, by  Application (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Drug Discovery

   5.2. Disease Diagnosis

   5.3. Personalized Medicine

   5.4. Genetic Research

   5.5. Synthetic Biology

   5.6. Healthcare Data Management

6. Generative AI In Biology Market, by  End-User (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Biotech Companies

   6.2. Pharmaceutical Companies

   6.3. Healthcare Providers

   6.4. Research Institutes

   6.5. Academic Institutions

7. Generative AI In Biology Market, by  Deployment Mode (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Cloud-based

   7.2. On-premise

8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America Generative AI In Biology Market, by Technology

      8.2.7. North America Generative AI In Biology Market, by  Application

      8.2.8. North America Generative AI In Biology Market, by  End-User

      8.2.9. North America Generative AI In Biology Market, by  Deployment Mode

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US Generative AI In Biology Market, by Technology

               8.2.10.1.2. US Generative AI In Biology Market, by  Application

               8.2.10.1.3. US Generative AI In Biology Market, by  End-User

               8.2.10.1.4. US Generative AI In Biology Market, by  Deployment Mode

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. IBM Watson Health

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Google DeepMind

   10.3. Microsoft

   10.4. NVIDIA Corporation

   10.5. Insilico Medicine

   10.6. Atomwise

   10.7. BenevolentAI

   10.8. Tempus

   10.9. BioAge Labs

   10.10. Exscientia

   10.11. Schrödinger

   10.12. Recursion Pharmaceuticals

   10.13. Verge Genomics

   10.14. Arctoris

   10.15. Cyclica

11. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Generative AI in Biology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Generative AI in Biology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Generative AI in Biology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options