+1 463-583-2713
As per Intent Market Research, the Edge AI Software Market was valued at USD 1.0 billion in 2023-e and will surpass USD 4.5 billion by 2030; growing at a CAGR of 31.2% during 2024 - 2030. Edge AI benefits from the increased bandwidth and lower latency provided by 5G, enabling new and enhanced applications.
Edge AI refers to the implementation of artificial intelligence (AI) algorithms and models directly on edge devices, such as smartphones, IoT devices, and other embedded systems, with reliance on centralized cloud servers. Edge AI software enables real-time data processing and analysis locally on the device, reducing the need for constant internet connectivity and minimizing latency. The edge AI software market includes a variety of solutions, including machine learning frameworks, inference engines, and development tools specifically designed for deployment to edge devices.
These technologies allow devices to independently perform tasks such as image and audio recognition, natural language processing, and other AI-driven functions, increasing efficiency and privacy. In summary, the edge AI software market includes the development and deployment of AI software tailored to edge devices to drive intelligence and decision-making capabilities at data-generating sources.
The widespread embrace of cloud computing is anticipated to lead to a surge in cloud workloads, driven by the increasing daily transfer of data to the cloud. Edge AI software solutions allow organizations to store and access data on edge nodes and devices that require real-time responses and are only needed for short periods. AI is increasing significantly as diverse applications emerge across many industries. For tasks such as real-time data processing and data collection, these apps require a lot of processing power to provide effective and useful results.
AI systems are created, managed, and implemented by qualified professionals. The use of technologies such as machine learning, cognitive computing, image recognition, and deep learning should be familiar to anyone working with AI systems. Incorporating AI technology into existing systems poses a significant challenge, demanding extensive data processing. Minor errors carry the risk of causing system malfunctions and failures, thereby influencing the efficiency of processes. The alteration of pre-existing machine learning-driven AI services mandates the expertise of adept data scientists and developers.
Solutions are expected to account for the largest market share during the forecast period. Edge AI software solutions are rapidly being adopted across a variety of industries, driving significant advancements and improving operational efficiency. From manufacturing to healthcare, transportation to agriculture, companies use edge AI to optimize processes, personalize experiences, and improve safety.
Based on deployment mode, the market is segmented into on-premises and cloud. The on-premises segment accounts for the largest revenue share in the edge AI software market. A huge ecosystem of tools is available that are designed for on-premises use and run with high computing power which is thriving the segmental growth.
Healthcare and life sciences held a significant revenue share in 2023. AI technology helps diagnose and identify various diseases by using more specific and accurate real-time data processing. A person's ability to speak, move, engage, and respond is limited by neurological disorders. AI-based brain-computer interfaces help humans perform basic tasks. The adoption of Edge AI software in the healthcare sector is on the rise, thereby driving the market growth.
Predictive Maintenance is expected to witness the highest CAGR during the forecast period. The popularity of Edge AI Predictive Maintenance services is increasing as organizations look to leverage the capabilities of edge AI without the complexities of in-house expertise or infrastructure management. These services provide comprehensive solutions across software, deployment, and ongoing maintenance, allowing businesses to focus on their core competencies while leveraging the innovative capabilities of edge AI.
North America held the dominant share in Edge AI market and expected to grow due to the introduction of superior 5G network technology. This growth is driven by the region's companies' focus on implementing advanced technologies such as AI, deep learning, and machine learning. For instance, in September 2021, Synaptics Incorporated, a hardware company based in the United States, collaborated with Edge Impulse, a California-based machine learning development platform for edge devices. The partnership aimed to integrate Synaptics' Katana edge AI and edge software development platform. The goal of this collaboration is to enable developers to create production-ready models and accelerate the adoption of low-power edge AI.
The market is characterized by strong competition, with a few major worldwide competitors owning a significant market share. The major focus is on partnerships and collaboration by the key players. For instance, in September 2022: Amazon Web Services partnered with SK Telecom. Under this collaboration, the two organizations are going to jointly develop new computer vision services that include classification, extraction, and analysis optimization to derive insights from images. Combining SK's expertise in AI with the scalability and elasticity of AWS drives innovation in AI. Additionally, this collaboration makes it easier and more economical to develop, use, and advance computer vision applications.
Some prominent players in the global Edge AI Software market are Alef Edge, Azion Technologies, FogHorn Systems, General Electric Company, Google, Huawei Technologies, IBM, Intel, Microsoft, Nutanix, NVIDIA, Qualcomm, Samsung Electronics, Synaptics, Tibco Software.
The report provides key insights into the Edge AI Software market, and it focuses on technological developments, trends, and initiatives taken by the government in this sector. The analysis focuses on market drivers, restraints, and opportunities, and examines key players and the competitive landscape within the Edge AI Software market.
Report Features |
Description |
Market Value (2023-e) |
USD 1.0 billion |
Forecast Revenue (2030) |
USD 4.5 billion |
CAGR (2024-2030) |
31.2% |
Base Year for Estimation |
2023-e |
Historic Year |
2022 |
Forecast Period |
2024-2030 |
Report Coverage |
Revenue Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
by Deployment (On-Premises and cloud-based), by Application (Image Recognition, Speech and Audio Recognition, Video Analytics, Predictive Maintenance & Others), by Vertical (Healthcare, BFSI, Government (Public), (Automotive, Agriculture & Others), and by Offering (Solutions & Services) |
Regional Analysis |
North America (US, Canada), Europe (Germany, France, UK, Spain, Italy), Asia Pacific (China, Japan, South Korea, India), Latin America (Brazil, Mexico, Argentina), Middle East & Africa (Saudi Arabia, South Africa, Turkey, United Arab Emirates) |
Competitive Landscape |
Alef Edge, Azion Technologies, FogHorn Systems, General Electric, Google, Huawei Technologies, IBM, Intel, Microsoft, Nutanix, NVIDIA, Qualcomm, Samsung Electronics, Synaptics, Tibco Software |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
Purchase Options |
We have three licenses to opt for Single User License, Multi-User License (Up to 5 Users), Corporate Use License (Unlimited User and Printable PDF) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Intent Market Research employs a rigorous methodology to minimize residual errors by carefully defining the scope, validating findings through primary research, and consistently updating our in-house database. This dynamic approach allows us to capture ongoing market fluctuations and adapt to evolving market uncertainties.
The research factors used in our methodology vary depending on the specific market being analyzed. To begin with, we incorporate both demand and supply side information into our model to identify and address market gaps. Additionally, we also employ approaches such as Macro-indicator Analysis, Factor Analysis, Value Chain-Based Sizing, and forecasting to further increase the accuracy of the numbers and validate the findings.
Our market research methodology utilizes both top-down and bottom-up approaches to segment and estimate quantitative aspects of the market. We also employ multi-perspective analysis, examining the market from distinct viewpoints.