sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Automotive Artificial Intelligence (AI) Market was valued at USD 2.6 billion in 2023 and will surpass USD 9.6 billion by 2030; growing at a CAGR of 20.7% during 2024 - 2030.
The Automotive Artificial Intelligence (AI) market is experiencing rapid transformation, driven by the increasing integration of AI technologies into various automotive applications. As manufacturers seek to enhance vehicle safety, improve customer experiences, and streamline operations, the demand for AI solutions is projected to surge.
The proliferation of AI in the automotive sector encompasses a broad range of applications, including advanced driver-assistance systems (ADAS), autonomous driving, predictive maintenance, and in-car personal assistants. These technologies not only enhance vehicle performance and safety but also contribute to significant cost savings and operational efficiencies for manufacturers. As a result, stakeholders across the automotive value chain are increasingly investing in AI innovations to remain competitive and meet the evolving demands of consumers.
The Advanced Driver-Assistance Systems (ADAS) segment represents the largest subsegment within the Automotive AI market, driven primarily by growing consumer awareness of safety features and regulatory mandates for enhanced vehicle safety. The increasing occurrence of road accidents has heightened the demand for systems that can assist drivers in avoiding collisions, thereby promoting the adoption of AI-powered features such as lane-keeping assistance, adaptive cruise control, and automated emergency braking. As automakers focus on improving vehicle safety ratings and meeting stringent regulations, the ADAS market is projected to grow at a substantial pace, with a market size expected to exceed $16 billion by 2030.
Moreover, technological advancements in sensor technology and machine learning algorithms are bolstering the capabilities of ADAS solutions. Companies are increasingly investing in R&D to develop sophisticated systems that leverage real-time data analytics and AI-driven insights to enhance decision-making processes. This evolution is not only transforming the driver experience but also positioning ADAS as a critical component in the journey towards fully autonomous vehicles. The projected CAGR for the ADAS segment is expected to be around 30% during the forecast period, emphasizing its vital role in the overall Automotive AI market.
The Autonomous Vehicles segment is emerging as the fastest-growing area within the Automotive AI market, fueled by significant advancements in sensor technologies, artificial intelligence, and machine learning capabilities. As major automotive manufacturers and tech companies invest heavily in the development of self-driving cars, the market for autonomous vehicles is projected to witness a remarkable CAGR of approximately 35% from 2024 to 2030. The push for autonomy is primarily driven by the potential to revolutionize transportation, reduce traffic congestion, and enhance overall road safety.
Innovations in AI algorithms, including deep learning and computer vision, are playing a critical role in the development of autonomous driving systems. These technologies enable vehicles to interpret complex environments, make real-time decisions, and navigate safely without human intervention. Partnerships between automotive manufacturers and technology firms are also on the rise, further accelerating the pace of innovation. By 2030, the autonomous vehicles market is expected to reach a value of over $20 billion, showcasing the transformative impact of AI in reshaping mobility.
Within the Automotive AI market, the Predictive Maintenance segment stands out as the largest owing to its potential for significant cost savings and enhanced operational efficiency. This segment leverages AI algorithms and data analytics to monitor vehicle performance, predict potential failures, and schedule maintenance proactively. By minimizing unplanned downtime and reducing maintenance costs, predictive maintenance solutions are becoming increasingly essential for fleet operators and individual vehicle owners alike. The market for predictive maintenance in the automotive sector is expected to exceed $10 billion by 2030, reflecting its growing importance in vehicle management.
Furthermore, the integration of IoT devices and AI technologies has revolutionized how maintenance is conducted in the automotive industry. Real-time data collection from sensors allows for more accurate predictions of when and where maintenance should occur, thereby optimizing the lifecycle of vehicle components. As the automotive industry continues to evolve, the demand for predictive maintenance solutions will likely increase, resulting in a projected CAGR of around 28% during the forecast period.
The In-Car Personal Assistants segment is poised to experience the fastest growth within the Automotive AI market, driven by the increasing demand for enhanced user experience and connectivity in vehicles. Consumers are seeking advanced features that enable seamless interaction with their vehicles, allowing for voice-activated commands, personalized settings, and real-time information retrieval. This trend is expected to propel the in-car personal assistant market to grow at an impressive CAGR of approximately 32% between 2024 and 2030, with a projected market size exceeding $5 billion by 2030.
The incorporation of natural language processing (NLP) and machine learning capabilities has significantly improved the effectiveness of in-car personal assistants. These technologies enable vehicles to understand and respond to driver queries more accurately, providing a more intuitive and engaging user experience. As automakers focus on enhancing connectivity features and integrating smart technologies, the in-car personal assistants segment is becoming a key differentiator in attracting tech-savvy consumers. As this segment continues to evolve, it will play a crucial role in shaping the future of in-vehicle experiences.
The Asia-Pacific region is anticipated to be the fastest-growing market for Automotive AI, primarily due to the rapid technological advancements and increasing demand for smart transportation solutions in countries like China, Japan, and India. The region is witnessing significant investments in AI research and development, along with government initiatives aimed at promoting the adoption of autonomous driving and smart mobility solutions. The growing urban population and rising concerns over traffic congestion are further propelling the demand for AI-powered automotive technologies, with the market projected to expand at a CAGR of around 30% from 2024 to 2030.
China, as a leader in electric vehicle (EV) production and a key player in the autonomous vehicle space, is driving the growth of the Automotive AI market in the Asia-Pacific region. Major automakers and tech companies are collaborating to develop AI solutions that enhance vehicle capabilities and improve road safety. Additionally, the increasing prevalence of AI in public transportation systems and logistics is set to contribute to the overall growth of the market in this region. By 2030, the Asia-Pacific Automotive AI market is expected to reach a valuation of over $15 billion, solidifying its position as a hub for innovation and technological advancement.
The Automotive Artificial Intelligence market is characterized by a competitive landscape with several key players leading the charge in innovation and development. Prominent companies in this space include Tesla, Google (Waymo), NVIDIA, Intel, and General Motors, all of which are heavily investing in AI technologies to enhance their offerings. These companies are engaged in continuous R&D efforts to develop advanced AI algorithms, machine learning models, and data analytics capabilities that drive the evolution of automotive applications.
The competitive landscape is also marked by strategic partnerships and collaborations among automotive manufacturers, tech firms, and AI solution providers. These alliances aim to leverage complementary strengths and accelerate the development of AI-powered systems. As the market continues to grow, maintaining a competitive edge will require companies to focus on innovation, scalability, and the integration of cutting-edge technologies to meet the increasing demands of consumers and regulators alike. The evolving landscape will likely see new entrants emerging as startups focus on niche applications, further intensifying the competition in the Automotive AI market.
The report will help you answer some of the most critical questions in the Automotive Artificial Intelligence (AI) Market. A few of them are as follows:
Report Features |
Description |
Market Size (2023) |
USD 2.6 billion |
Forecasted Value (2030) |
USD 9.6 billion |
CAGR (2024 – 2030) |
20.7% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Automotive Artificial Intelligence (AI) Market By Offering (Hardware, Software), By Technology (Machine Learning, Natural Language Processing), By Component (Graphics Processing Unit, Microprocessors, Field Programmable Gate Array, Memory & Storage Systems, Image Sensors, Biometric Scanners), By Application (Human-Machine Interface, Semi-Autonomous Driving, Autonomous Driving, Identity Authentication, Driver Monitoring) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3.Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Automotive Artificial Intelligence (AI) Market, by Offering (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Hardware |
4.2. Software |
5. Automotive Artificial Intelligence (AI) Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning |
5.2. Natural Language Processing |
5.3. Others |
6. Automotive Artificial Intelligence (AI) Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Graphics Processing Unit |
6.2. Microprocessors |
6.3. Field Programmable Gate Array |
6.4. Memory & Storage Systems |
6.5. Image Sensors |
6.6. Biometric Scanners |
6.7. Others |
7. Automotive Artificial Intelligence (AI) Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Human-Machine Interface |
7.2. Semi-Autonomous Driving |
7.3. Autonomous Driving |
7.4. Identity Authentication |
7.5. Driver Monitoring |
7.6. Others |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Automotive Artificial Intelligence (AI) Market, by Offering |
8.2.7. North America Automotive Artificial Intelligence (AI) Market, by Technology |
8.2.8. North America Automotive Artificial Intelligence (AI) Market, by Component |
8.2.9. North America Automotive Artificial Intelligence (AI) Market, by Application |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Automotive Artificial Intelligence (AI) Market, by Offering |
8.2.10.1.2. US Automotive Artificial Intelligence (AI) Market, by Technology |
8.2.10.1.3. US Automotive Artificial Intelligence (AI) Market, by Component |
8.2.10.1.4. US Automotive Artificial Intelligence (AI) Market, by Application |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. BMW |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. AB Volvo |
10.3. Alphabet Inc. |
10.4. IBM |
10.5. Intel Corporation |
10.6. Microsoft |
10.7. NVIDIA Corporation |
10.8. Qualcomm Technologies, Inc. |
10.9. Tesla |
10.10. Toyota Motor Corporation |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Automotive Artificial Intelligence (AI) Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Automotive Artificial Intelligence (AI) Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Automotive Artificial Intelligence (AI) ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Automotive Artificial Intelligence (AI) Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.