Augmented Analytics in BFSI Market By Technology (Natural Language Processing (NLP), Machine Learning, Data Mining, Predictive Analytics), By Deployment Type (Cloud-Based, On-Premise), By End-Use Industry (Banking, Insurance, Financial Services), By Application (Risk Management, Fraud Detection, Customer Insights, Investment Management, Compliance & Regulation), and By Region; Global Insights & Forecast (2024 – 2030)

As per Intent Market Research, the Augmented Analytics in BFSI Market was valued at USD 5.1 billion in 2023 and will surpass USD 11.9 billion by 2030; growing at a CAGR of 12.9% during 2024 - 2030. The augmented analytics market in the BFSI (Banking, Financial Services, and Insurance) sector is experiencing rapid growth as financial institutions increasingly leverage AI-driven technologies to enhance data analysis, decision-making, and operational efficiency. Augmented analytics uses advanced tools such as machine learning, natural language processing (NLP), and predictive analytics to automate data processing and provide actionable insights, helping organizations unlock the full potential of their data. By integrating these technologies into their operations, BFSI companies can improve their ability to forecast market trends, mitigate risks, and enhance customer satisfaction through personalized experiences. As financial institutions generate vast amounts of data daily, the need for advanced analytics tools has never been greater. Augmented analytics simplifies complex data and provides real-time insights, enabling decision-makers to act faster and more accurately. The adoption of these solutions is also being driven by the growing need for compliance with regulations, fraud detection, and the optimization of investment portfolios. As the BFSI sector continues to embrace digital transformation, the demand for augmented analytics tools is expected to soar, improving operational capabilities and delivering competitive advantages. Machine Learning Technology is Fastest Growing Owing to Predictive Capabilities and Automation Machine learning is the fastest-growing technology in the augmented analytics market within the BFSI sector, primarily due to its predictive capabilities and automation potential. Machine learning algorithms can analyze large datasets to identify patterns, forecast trends, and make data-driven predictions, enabling financial institutions to enhance their decision-making processes. For example, machine learning is increasingly used in risk management to predict potential defaults or in fraud detection to spot unusual patterns of behavior that may indicate fraudulent activity. These capabilities not only help organizations minimize risks but also increase the speed and accuracy of their operations. The adoption of machine learning in BFSI is accelerating as the technology matures and becomes more accessible to financial institutions of all sizes. Machine learning algorithms continuously improve as they process more data, enabling businesses to refine their models and make more accurate predictions over time. As the demand for automation and enhanced data insights grows, machine learning will continue to lead the charge in the augmented analytics market, particularly in areas like customer insights, investment management, and compliance. Cloud-Based Deployment is Leading Due to Flexibility and Scalability Cloud-based deployment is the leading segment in the augmented analytics market for BFSI, largely due to the flexibility and scalability it offers. Cloud-based solutions allow financial institutions to access advanced analytics tools without the need for extensive on-premise infrastructure, significantly reducing costs. These solutions provide the agility to scale operations based on demand and ensure that organizations can easily manage large datasets in real time. Furthermore, cloud platforms often come with built-in security features, which are essential for the BFSI sector where data privacy and compliance with regulatory requirements are of utmost importance. The cloud model also facilitates the integration of augmented analytics solutions with other enterprise systems, enabling a seamless flow of data and insights across departments. Financial institutions can benefit from cloud-based augmented analytics tools that provide real-time reporting, predictive analytics, and personalized recommendations, all of which contribute to more informed decision-making and enhanced customer experiences. As cloud technology continues to evolve and become more secure, its adoption in the BFSI sector is expected to remain strong, further driving the market for augmented analytics. Risk Management Application is Largest Due to Growing Need for Data-Driven Decision Making Risk management is the largest application segment within the augmented analytics market in BFSI, driven by the increasing need for financial institutions to proactively manage risks and mitigate potential losses. Augmented analytics tools provide advanced data analysis and predictive modeling capabilities that help organizations assess credit risk, market risk, operational risk, and other financial risks more accurately. By integrating machine learning, predictive analytics, and NLP into risk management processes, BFSI companies can identify emerging risks, monitor market conditions, and implement timely mitigation strategies. In addition to identifying risks, augmented analytics solutions also help organizations manage compliance with regulatory requirements, streamline risk assessment procedures, and improve decision-making. As financial institutions face increasing pressure to comply with regulatory standards and ensure the safety of their assets, the demand for augmented analytics solutions in risk management continues to grow, making it the largest application in the BFSI market. Banking Industry is Largest End-Use Segment Due to Data Complexity and Operational Demands The banking industry is the largest end-use segment for augmented analytics within the BFSI market, driven by the sector’s complex data requirements and operational demands. Banks generate vast amounts of data daily, from transactions to customer interactions, which must be analyzed for decision-making, risk management, and compliance. Augmented analytics tools allow banks to process and analyze this data more efficiently, enabling them to deliver personalized customer services, improve fraud detection, optimize lending practices, and comply with regulatory frameworks. The banking industry is also at the forefront of adopting machine learning and predictive analytics to gain insights from large datasets, providing a competitive edge in areas such as credit scoring, risk assessment, and customer behavior analysis. As banks continue to digitize and seek smarter, more efficient ways to operate, augmented analytics solutions are increasingly becoming essential for improving operational efficiency, reducing costs, and enhancing customer experiences, making banking the dominant end-use industry in the market. North America Region is Largest Market Due to High Adoption of Advanced Technologies North America is the largest region in the augmented analytics market for BFSI, driven by the high adoption of advanced technologies and the presence of key market players. The United States, in particular, is a major hub for financial institutions that are rapidly embracing augmented analytics to improve decision-making, risk management, and customer engagement. With a well-established IT infrastructure and a strong emphasis on digital transformation, North America continues to lead in the development and deployment of advanced analytics solutions within the BFSI sector. The region’s focus on regulatory compliance, data privacy, and innovation also plays a significant role in the adoption of augmented analytics technologies. Financial institutions in North America are increasingly utilizing machine learning, predictive analytics, and NLP to gain deeper insights into customer behavior, optimize operations, and enhance financial forecasting. As demand for data-driven insights grows, North America is expected to maintain its dominance in the global augmented analytics market, particularly in the BFSI sector. Leading Companies and Competitive Landscape The augmented analytics market for BFSI is highly competitive, with several key players offering cutting-edge solutions to financial institutions. Leading companies in the market include IBM, SAS Institute, Tableau Software, Microsoft, and Qlik, which provide a range of AI-powered analytics tools that integrate with existing BFSI systems. These companies are at the forefront of developing advanced technologies, such as machine learning, NLP, and predictive analytics, to address the growing needs of financial institutions for real-time insights and data-driven decision-making. The competitive landscape is evolving as companies focus on expanding their product offerings, forging strategic partnerships, and leveraging AI and cloud-based solutions to meet the demands of the BFSI sector. As financial institutions continue to seek innovative ways to manage risk, improve compliance, and enhance customer experiences, the competition among solution providers will intensify, with an emphasis on delivering scalable, secure, and highly efficient augmented analytics solutions. Recent Developments: • In November 2024, IBM Corporation unveiled a new augmented analytics platform designed to enhance fraud detection and risk management capabilities in BFSI. • In October 2024, SAS Institute announced an AI-powered solution for financial institutions, focusing on predictive analytics and customer insights in the BFSI sector. • In September 2024, Microsoft Corporation expanded its Azure AI tools to integrate advanced analytics capabilities for BFSI clients. • In August 2024, Accenture launched a cloud-based augmented analytics solution aimed at optimizing investment management for global financial firms. • In July 2024, PwC rolled out a new data analytics service designed to help insurance companies improve compliance and regulatory reporting. List of Leading Companies: • IBM Corporation • SAS Institute • Microsoft Corporation • Oracle Corporation • SAP SE • Qlik Technologies • TIBCO Software • Informatica • Teradata Corporation • Tableau Software • Accenture • PwC (PricewaterhouseCoopers) • Capgemini • Cognizant Technology Solutions • FICO Report Scope: Report Features Description Market Size (2023) USD 5.1 billion Forecasted Value (2030) USD 11.9 billion CAGR (2024 – 2030) 12.9% Base Year for Estimation 2023 Historic Year 2022 Forecast Period 2024 – 2030 Report Coverage Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments Segments Covered Augmented Analytics in BFSI Market By Technology (Natural Language Processing (NLP), Machine Learning, Data Mining, Predictive Analytics), By Deployment Type (Cloud-Based, On-Premise), By End-Use Industry (Banking, Insurance, Financial Services), By Application (Risk Management, Fraud Detection, Customer Insights, Investment Management, Compliance & Regulation) Regional Analysis North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) Major Companies IBM Corporation, SAS Institute, Microsoft Corporation, Oracle Corporation, SAP SE, Qlik Technologies, TIBCO Software, Informatica, Teradata Corporation, Tableau Software, Accenture, PwC (PricewaterhouseCoopers), Capgemini, Cognizant Technology Solutions, FICO Customization Scope Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction 1.1. Market Definition 1.2. Scope of the Study 1.3. Research Assumptions 1.4. Study Limitations 2. Research Methodology 2.1. Research Approach 2.1.1. Top-Down Method 2.1.2. Bottom-Up Method 2.1.3. Factor Impact Analysis 2.2. Insights & Data Collection Process 2.2.1. Secondary Research 2.2.2. Primary Research 2.3. Data Mining Process 2.3.1. Data Analysis 2.3.2. Data Validation and Revalidation 2.3.3. Data Triangulation 3. Executive Summary 3.1. Major Markets & Segments 3.2. Highest Growing Regions and Respective Countries 3.3. Impact of Growth Drivers & Inhibitors 3.4. Regulatory Overview by Country 4. Augmented Analytics in BFSI Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) 4.1. Natural Language Processing (NLP) 4.2. Machine Learning 4.3. Data Mining 4.4. Predictive Analytics 5. Augmented Analytics in BFSI Market, by Deployment Type (Market Size & Forecast: USD Million, 2022 – 2030) 5.1. Cloud-Based 5.2. On-Premise 6. Augmented Analytics in BFSI Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) 6.1. Banking 6.2. Insurance 6.3. Financial Services 7. Augmented Analytics in BFSI Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) 7.1. Risk Management 7.2. Fraud Detection 7.3. Customer Insights 7.4. Investment Management 7.5. Compliance & Regulation 8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) 8.1. Regional Overview 8.2. North America 8.2.1. Regional Trends & Growth Drivers 8.2.2. Barriers & Challenges 8.2.3. Opportunities 8.2.4. Factor Impact Analysis 8.2.5. Technology Trends 8.2.6. North America Augmented Analytics in BFSI Market, by Technology 8.2.7. North America Augmented Analytics in BFSI Market, by Deployment Type 8.2.8. North America Augmented Analytics in BFSI Market, by End-Use Industry 8.2.9. North America Augmented Analytics in BFSI Market, by Application 8.2.10. By Country 8.2.10.1. US 8.2.10.1.1. US Augmented Analytics in BFSI Market, by Technology 8.2.10.1.2. US Augmented Analytics in BFSI Market, by Deployment Type 8.2.10.1.3. US Augmented Analytics in BFSI Market, by End-Use Industry 8.2.10.1.4. US Augmented Analytics in BFSI Market, by Application 8.2.10.2. Canada 8.2.10.3. Mexico *Similar segmentation will be provided for each region and country 8.3. Europe 8.4. Asia-Pacific 8.5. Latin America 8.6. Middle East & Africa 9. Competitive Landscape 9.1. Overview of the Key Players 9.2. Competitive Ecosystem 9.2.1. Level of Fragmentation 9.2.2. Market Consolidation 9.2.3. Product Innovation 9.3. Company Share Analysis 9.4. Company Benchmarking Matrix 9.4.1. Strategic Overview 9.4.2. Product Innovations 9.5. Start-up Ecosystem 9.6. Strategic Competitive Insights/ Customer Imperatives 9.7. ESG Matrix/ Sustainability Matrix 9.8. Manufacturing Network 9.8.1. Locations 9.8.2. Supply Chain and Logistics 9.8.3. Product Flexibility/Customization 9.8.4. Digital Transformation and Connectivity 9.8.5. Environmental and Regulatory Compliance 9.9. Technology Readiness Level Matrix 9.10. Technology Maturity Curve 9.11. Buying Criteria 10. Company Profiles 10.1. IBM Corporation 10.1.1. Company Overview 10.1.2. Company Financials 10.1.3. Product/Service Portfolio 10.1.4. Recent Developments 10.1.5. IMR Analysis *Similar information will be provided for other companies 10.2. SAS Institute 10.3. Microsoft Corporation 10.4. Oracle Corporation 10.5. SAP SE 10.6. Qlik Technologies 10.7. TIBCO Software 10.8. Informatica 10.9. Teradata Corporation 10.10. Tableau Software 10.11. Accenture 10.12. PwC (PricewaterhouseCoopers) 10.13. Capgemini 10.14. Cognizant Technology Solutions 10.15. FICO 11. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Augmented Analytics in BFSI Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Augmented Analytics in BFSI Market . The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options