sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Artificial Intelligence (AI) In Ultrasound Imaging Market was valued at USD 3.0 Billion in 2023 and will surpass USD 13.5 Billion by 2030; growing at a CAGR of 24.2% during 2024 - 2030.
The artificial intelligence (AI) in ultrasound imaging market is witnessing significant growth as advanced AI technologies, including machine learning (ML), deep learning (DL), and computer vision, are increasingly integrated into ultrasound imaging systems. These innovations enable healthcare professionals to achieve faster and more accurate diagnoses by analyzing vast amounts of ultrasound data. AI's ability to enhance image quality, automate measurements, and assist with clinical decision-making is revolutionizing ultrasound imaging, offering substantial benefits in both clinical and diagnostic settings. This market is being driven by the rising demand for non-invasive, real-time diagnostics, as well as the growing adoption of AI-driven tools to optimize ultrasound imaging processes.
As the healthcare industry continues to adopt AI technologies to improve diagnostic precision, reduce human error, and increase efficiency, the AI in ultrasound imaging market is expected to grow steadily. This growth is fueled by increasing healthcare infrastructure investments, technological advancements in AI algorithms, and rising awareness about the benefits of AI in medical imaging. The widespread integration of AI in ultrasound systems promises to transform diagnostic imaging in several specialties, enhancing patient outcomes and streamlining clinical workflows.
The deep learning (DL) segment is the largest in the AI in ultrasound imaging market, primarily due to its superior ability to process complex data and enhance image quality. DL algorithms are capable of learning from large datasets to recognize patterns in medical images, such as ultrasound scans, and generate highly accurate diagnostic results. In ultrasound imaging, deep learning can be used to identify subtle patterns in tissues, organs, and structures that might be missed by traditional methods, making it a powerful tool for accurate diagnoses.
Deep learning's ability to analyze images with greater precision and to detect anomalies with higher sensitivity is essential in medical fields like obstetrics, cardiology, and musculoskeletal imaging. As the demand for precise diagnostic imaging grows, deep learning's role in improving image resolution, automating measurements, and supporting clinical decision-making is expected to continue expanding. This makes deep learning the dominant technology in the AI-driven ultrasound imaging market, especially in applications requiring high levels of accuracy and detail.
The obstetrics and gynecology (OB/GYN) application is the largest within the AI in ultrasound imaging market, driven by the increasing use of AI in prenatal and gynecological imaging. AI technologies in OB/GYN are transforming ultrasound imaging by automating image analysis and providing real-time insights that aid in diagnosing various conditions, such as fetal abnormalities, uterine diseases, and ovarian cysts. The ability of AI to process complex ultrasound images and detect potential health issues has made it an invaluable tool in maternal and women’s health.
The adoption of AI-powered ultrasound systems in obstetrics and gynecology is growing due to their ability to improve diagnostic accuracy and reduce the time required for interpreting images. AI tools can detect early signs of fetal distress, growth abnormalities, or developmental issues, leading to better outcomes for both mothers and infants. The increasing demand for efficient and accurate diagnostics in OB/GYN is expected to drive the continued growth of this application segment within the AI in ultrasound imaging market.
The hospitals segment is the largest end-use industry within the AI in ultrasound imaging market, driven by the high patient volume and diverse diagnostic needs found in hospitals. Hospitals are primary centers for the diagnosis and treatment of various conditions, and the integration of AI in ultrasound imaging systems helps streamline workflows, reduce diagnostic errors, and enhance patient care. AI-powered ultrasound tools are being increasingly used in emergency medicine, cardiology, obstetrics, and other medical specialties to improve the speed and accuracy of diagnoses.
The use of AI in hospitals is essential for handling large volumes of imaging data and for providing timely, accurate diagnoses. AI-powered ultrasound systems can assist clinicians in interpreting ultrasound scans more efficiently, enabling them to make faster, more informed decisions about patient care. With AI technologies continuing to evolve, hospitals are expected to remain the dominant end-user in the AI-driven ultrasound imaging market, given their role in providing comprehensive healthcare services to a broad patient population.
North America is the largest region in the AI in ultrasound imaging market, largely due to its advanced healthcare infrastructure, high adoption rates of AI technologies, and the presence of leading medical imaging companies. The United States, in particular, is a key market driver, with hospitals, diagnostic imaging centers, and research institutes actively integrating AI-powered ultrasound systems to improve diagnostic accuracy and efficiency. The strong regulatory support for AI in healthcare, coupled with high levels of healthcare expenditure and innovation, contributes to the region's dominance in the market.
The growing demand for AI in ultrasound imaging in North America is also fueled by a robust healthcare research ecosystem that encourages the development of new AI technologies. Additionally, the region's well-established healthcare providers and medical imaging companies are leading the way in adopting AI-driven solutions. As a result, North America is expected to continue holding a significant share of the global AI in ultrasound imaging market in the coming years.
The AI in ultrasound imaging market is highly competitive, with several key players leading the way in technological innovation and market development. Prominent companies in this market include GE Healthcare, Siemens Healthineers, Philips Healthcare, Canon Medical Systems, and IBM Watson Health. These companies are at the forefront of AI advancements, integrating deep learning, machine learning, and other AI technologies into their ultrasound imaging systems.
The competitive landscape is characterized by strategic collaborations, acquisitions, and partnerships between AI technology providers and healthcare organizations to expand market reach and improve product offerings. Companies are focusing on developing AI-powered ultrasound platforms that can offer higher accuracy, faster results, and better overall patient care. The increasing demand for AI-driven ultrasound solutions in hospitals, diagnostic centers, and research institutes ensures that the competitive dynamics in this market will remain strong, with ongoing innovations set to drive growth in the coming years.
Report Features |
Description |
Market Size (2023) |
USD 3.0 Billion |
Forecasted Value (2030) |
USD 13.5 Billion |
CAGR (2024 – 2030) |
24.2% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence (AI) in Ultrasound Imaging Market by Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), by Application (Obstetrics and Gynecology, Cardiology, Musculoskeletal Imaging, Abdominal Imaging, Emergency Medicine), by End-Use Industry (Hospitals, Diagnostic Imaging Centers, Research Institutes) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Blackford Analysis, Butterfly Network, Canon Medical Systems, EchoNous, Esaote, Fujifilm Holdings Corporation, Hologic, Medtronic, Mindray, Philips Healthcare, Samsung Medison, Siemens Healthineers, Zebra Medical Vision |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence (AI) In Ultrasound Imaging Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Deep Learning |
4.3. Natural Language Processing |
4.4. Computer Vision |
5. Artificial Intelligence (AI) In Ultrasound Imaging Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Obstetrics and Gynecology |
5.2. Cardiology |
5.3. Musculoskeletal Imaging |
5.4. Abdominal Imaging |
5.5. Emergency Medicine |
5.6. Others |
6. Artificial Intelligence (AI) In Ultrasound Imaging Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Hospitals |
6.2. Diagnostic Imaging Centers |
6.3. Research Institutes |
6.4. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America Artificial Intelligence (AI) In Ultrasound Imaging Market, by Technology |
7.2.7. North America Artificial Intelligence (AI) In Ultrasound Imaging Market, by Application |
7.2.8. North America Artificial Intelligence (AI) In Ultrasound Imaging Market, by End-Use Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US Artificial Intelligence (AI) In Ultrasound Imaging Market, by Technology |
7.2.9.1.2. US Artificial Intelligence (AI) In Ultrasound Imaging Market, by Application |
7.2.9.1.3. US Artificial Intelligence (AI) In Ultrasound Imaging Market, by End-Use Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Blackford Analysis |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. Butterfly Network |
9.3. Canon Medical Systems |
9.4. EchoNous |
9.5. Esaote |
9.6. Fujifilm Holdings Corporation |
9.7. GE Healthcare |
9.8. Hologic |
9.9. Medtronic |
9.10. Mindray |
9.11. Philips Healthcare |
9.12. Samsung Medison |
9.13. Siemens Healthineers |
9.14. U-Systems (a division of GE Healthcare) |
9.15. Zebra Medical Vision |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence (AI) in Ultrasound Imaging Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence (AI) in Ultrasound Imaging Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence (AI) in Ultrasound Imaging Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.