sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Artificial Intelligence in Supply Chain Market was valued at USD 8.4 billion in 2023 and will surpass USD 52.3 billion by 2030; growing at a CAGR of 29.8% during 2024 - 2030.
The artificial intelligence (AI) in the supply chain market is undergoing significant transformation, driven by the growing demand for automation and data-driven decision-making in global supply chains. AI technologies, such as machine learning, natural language processing (NLP), and robotic process automation (RPA), are being increasingly integrated into supply chain operations to streamline processes, optimize resource allocation, and reduce costs. AI-driven solutions enable supply chain players to predict demand fluctuations, optimize inventories, enhance order fulfillment, and improve overall operational efficiency. As industries look to digital transformation to remain competitive, AI adoption is proving to be a critical enabler of smarter, more efficient supply chain management.
The machine learning (ML) segment dominates the AI in the supply chain market due to its ability to analyze large volumes of data and deliver predictive insights across various applications. ML algorithms can identify patterns and trends in historical data, allowing businesses to predict demand more accurately, optimize inventory levels, and forecast potential supply chain disruptions. This makes it a key enabler for demand forecasting, supply chain optimization, and predictive maintenance.
Machine learning is particularly effective in supply chain management because it continuously learns and improves over time, ensuring the accuracy of its predictions and recommendations. It is increasingly being adopted by industries such as retail, manufacturing, and logistics to improve operational efficiencies and make more informed, data-driven decisions. As businesses continue to realize the potential of machine learning, it remains the backbone of AI-driven supply chain management solutions.
The cloud-based deployment type is experiencing the fastest growth in the AI in supply chain market, driven by the flexibility, scalability, and cost-effectiveness that cloud solutions offer. Cloud-based platforms allow businesses to deploy AI-powered applications without the need for significant upfront capital investment in infrastructure. This is particularly appealing to small and medium-sized enterprises (SMEs) and large organizations alike, as it lowers the barrier to entry for adopting AI technologies in supply chain operations.
Cloud-based solutions also offer real-time data access, enabling companies to make faster decisions, optimize supply chains on the go, and enhance collaboration across multiple stakeholders in the supply chain. Moreover, the integration of AI in the cloud further enhances the ability to analyze vast datasets, enabling businesses to respond quickly to changes in consumer demand, market conditions, and operational challenges. As more companies move to cloud-based infrastructures, this deployment type is expected to continue its rapid growth.
The retail industry is the largest end-user of AI technologies in the supply chain, driven by the rapid growth of e-commerce and the increasing need for efficient, scalable supply chain solutions. Retailers are leveraging AI for demand forecasting, inventory optimization, and personalized customer service, all of which are essential for staying competitive in the fast-paced, data-driven retail environment. AI-powered solutions help retailers predict customer buying behavior, optimize product stocking, and improve delivery times, ultimately enhancing customer satisfaction.
The expansion of e-commerce platforms and the rising demand for quicker, more reliable deliveries are pushing retailers to adopt AI-driven supply chain management tools. As consumers increasingly expect faster deliveries and more tailored shopping experiences, AI is helping retailers streamline their operations and meet these expectations with greater precision. Retailers like Amazon and Walmart are pioneers in integrating AI into their supply chains, serving as examples of how AI can be leveraged to boost competitiveness and efficiency in the sector.
Demand forecasting is the largest application of AI in the supply chain market, as it directly influences a company’s ability to meet customer demand while minimizing waste and excess inventory. AI-powered demand forecasting solutions analyze historical data, seasonal trends, market conditions, and other influencing factors to predict future demand with greater accuracy than traditional methods. By improving demand accuracy, businesses can optimize their production schedules, reduce stockouts, and lower the risk of overproduction, which in turn reduces costs and enhances customer satisfaction.
AI-driven demand forecasting is particularly valuable in industries such as retail, automotive, and consumer electronics, where demand fluctuations are common. The ability to respond dynamically to these fluctuations allows companies to stay ahead of competitors, manage supply chain risks, and align inventory levels more closely with actual demand. As a result, demand forecasting remains the cornerstone of AI-powered supply chain applications, providing businesses with the insights needed to make proactive, informed decisions.
North America holds the largest market share in the AI in supply chain market, owing to the region's advanced technological infrastructure, high levels of AI adoption, and a strong presence of key industry players. The United States, in particular, is at the forefront of AI innovations in supply chain management, with companies across sectors such as retail, manufacturing, and logistics increasingly adopting AI technologies to drive operational efficiencies. The region also benefits from a well-established e-commerce ecosystem, further fueling demand for AI-powered supply chain solutions.
North America’s strong focus on digital transformation and the growing need for efficient supply chain operations are driving the widespread adoption of AI in the region. Additionally, the presence of major technology companies such as IBM, Amazon, and Microsoft, which are leading the development of AI solutions for the supply chain, continues to boost the region’s dominance in the market.
The AI in supply chain market is highly competitive, with numerous global technology companies and supply chain solution providers leading the charge in developing AI-powered solutions. Key players in the market include IBM Corporation, SAP SE, Microsoft Corporation, Oracle Corporation, and Amazon Web Services (AWS). These companies have strong portfolios of AI solutions for the supply chain, ranging from demand forecasting and inventory management tools to robotic process automation and predictive maintenance systems.
The competitive landscape is characterized by continuous innovation, as companies strive to integrate more advanced AI technologies such as machine learning, natural language processing, and deep learning into their solutions. Strategic partnerships, acquisitions, and investments in AI R&D are common as companies look to strengthen their market position. The growing focus on offering cloud-based, scalable AI solutions has also intensified competition, with several players focusing on cloud-native platforms to cater to businesses of all sizes. As the demand for AI-powered supply chain management grows, these leading companies are poised to dominate the market with their cutting-edge technologies and strong customer bases.
Report Features |
Description |
Market Size (2023) |
USD 8.4 Billion |
Forecasted Value (2030) |
USD 52.3 Billion |
CAGR (2024 – 2030) |
29.8% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence in Supply Chain Market By Technology (Machine Learning, Natural Language Processing, Deep Learning, Robotic Process Automation, Computer Vision), By Deployment Type (Cloud-Based, On-Premises), By End-User Industry (Retail, Manufacturing, Automotive, Healthcare, Logistics & Transportation, Food & Beverages, Consumer Electronics), By Application (Demand Forecasting, Inventory Management, Order Processing & Fulfillment, Predictive Maintenance, Supply Chain Optimization, Procurement & Sourcing, Logistics & Route Optimization) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Amazon Web Services (AWS),Blue Yonder,Cognizant Technology Solutions,Google Cloud (Alphabet Inc.),Honeywell International Inc.,IBM Corporation,JDA Software (now Blue Yonder),KPMG LLP,Llamasoft (Acquired by Coupa),Manhattan Associates,Microsoft Corporation,Oracle Corporation,SAP SE,Siemens AG,Tata Consultancy Services (TCS) |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence in Supply Chain Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Deep Learning |
4.4. Robotic Process Automation (RPA) |
4.5. Computer Vision |
5. Artificial Intelligence in Supply Chain Market, by Deployment Type (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Cloud-Based |
5.2. On-Premises |
6. Artificial Intelligence in Supply Chain Market, by End-User Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Retail |
6.2. Manufacturing |
6.3. Automotive |
6.4. Healthcare |
6.5. Logistics & Transportation |
6.6. Food & Beverages |
6.7. Consumer Electronics |
7. Artificial Intelligence in Supply Chain Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Demand Forecasting |
7.2. Inventory Management |
7.3. Order Processing & Fulfillment |
7.4. Predictive Maintenance |
7.5. Supply Chain Optimization |
7.6. Procurement & Sourcing |
7.7. Logistics & Route Optimization |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Artificial Intelligence in Supply Chain Market, by Technology |
8.2.7. North America Artificial Intelligence in Supply Chain Market, by Deployment Type |
8.2.8. North America Artificial Intelligence in Supply Chain Market, by End-User Industry |
8.2.9. North America Artificial Intelligence in Supply Chain Market, by Application |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Artificial Intelligence in Supply Chain Market, by Technology |
8.2.10.1.2. US Artificial Intelligence in Supply Chain Market, by Deployment Type |
8.2.10.1.3. US Artificial Intelligence in Supply Chain Market, by End-User Industry |
8.2.10.1.4. US Artificial Intelligence in Supply Chain Market, by Application |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. Amazon Web Services (AWS) |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Blue Yonder |
10.3. Cognizant Technology Solutions |
10.4. Google Cloud (Alphabet Inc.) |
10.5. Honeywell International Inc. |
10.6. IBM Corporation |
10.7. JDA Software (now Blue Yonder) |
10.8. KPMG LLP |
10.9. Llamasoft (Acquired by Coupa) |
10.10. Manhattan Associates |
10.11. Microsoft Corporation |
10.12. Oracle Corporation |
10.13. SAP SE |
10.14. Siemens AG |
10.15. Tata Consultancy Services (TCS) |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence in Supply Chain Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence in Supply Chain Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Artificial Intelligence in Supply Chain ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence in Supply Chain Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.