sales@intentmarketresearch.com

  +1 463-583-2713

Artificial Intelligence In Retail Market By Component (Solution, Service), By Technology (Machine Learning, Natural Language Processing, Chatbots, Image and Video Analytics, Swarm Intelligence), By Sales Channel (Omnichannel, Brick and Mortar, Pure-play Online Retailers), By Application (Customer Relationship Management (CRM), Supply Chain and Logistics, Inventory Management, Product Optimization, In-Store Navigation, Payment and Pricing Analytics, Virtual Assistant), and By Region; Global Insights & Forecast (2024 – 2030)

Published: December, 2024  
|   Report ID: TMT4361  
|   Technology, Media, and Telecommunications

As per Intent Market Research, the Artificial Intelligence In Retail Market was valued at USD 7.9 billion in 2023 and will surpass USD 22.8 billion by 2030; growing at a CAGR of 16.3% during 2024 - 2030.

The Artificial Intelligence (AI) in Retail Market is revolutionizing the way retailers operate by enabling enhanced customer experiences, operational efficiency, and personalized marketing strategies. AI technologies are being integrated across various facets of retail, from customer relationship management to supply chain optimization and product recommendations. By leveraging data analytics, machine learning, and advanced algorithms, retailers are able to better understand customer preferences, streamline operations, and make smarter, data-driven decisions. With the growing adoption of e-commerce and changing consumer behavior, AI is becoming a crucial tool for retailers aiming to stay competitive in an increasingly digital world.

The AI in retail market includes various components such as solutions, services, and technologies that improve different aspects of retail operations. Technologies like machine learning, natural language processing (NLP), and image analytics are widely used to automate tasks, predict trends, and personalize the shopping experience. Additionally, AI is playing a major role in optimizing supply chains, inventory management, and pricing strategies. As AI adoption continues to grow across the retail industry, the market is poised for significant expansion, driven by the increasing demand for smarter, more efficient retail solutions that can cater to the evolving needs of consumers and businesses alike.

Solution Component is Dominating the AI in Retail Market with Tailored Offerings

The Solution component is leading the AI in Retail Market due to the wide range of tailored AI-driven tools and platforms designed to address specific challenges retailers face. AI solutions in retail encompass a variety of applications, including personalized product recommendations, demand forecasting, pricing optimization, and enhanced customer engagement. These solutions enable retailers to leverage customer data to create more personalized shopping experiences, which in turn improves customer satisfaction and loyalty.

Retailers are increasingly adopting AI-based solutions to automate various operational processes such as inventory management, order fulfillment, and fraud detection. For instance, AI-driven predictive analytics allow retailers to forecast demand accurately, ensuring optimal stock levels and reducing the risk of overstocking or stockouts. Additionally, AI solutions help with dynamic pricing by analyzing market trends, competitor pricing, and consumer demand to optimize prices in real-time. As the need for more sophisticated retail management systems grows, AI solutions are playing an increasingly central role in shaping the retail industry's future.

Artificial Intelligence In Retail Market Size 2030

Machine Learning Technology Driving Personalization and Operational Efficiency

Among the various technologies driving the AI in retail market, Machine Learning (ML) is the most transformative and fastest-growing technology. ML algorithms enable retailers to analyze large datasets and gain actionable insights that can be used for personalized product recommendations, targeted marketing campaigns, and inventory management. ML-based systems continually learn from customer behavior and adapt, which allows retailers to deliver highly personalized experiences, enhance customer engagement, and predict trends more accurately.

One of the primary uses of machine learning in retail is to recommend products based on a customer's browsing and purchase history. These algorithms help retailers suggest relevant products, thereby increasing sales and improving customer satisfaction. Additionally, ML is applied in fraud detection, supply chain optimization, and predictive analytics, enabling retailers to streamline their operations and reduce costs. As machine learning technology evolves, its ability to analyze and predict consumer behavior will continue to reshape the retail landscape, making it a key driver of growth in the AI in retail market.

Omnichannel Sales Channel Leading the Retail Revolution

The Omnichannel sales channel is the largest and most impactful in the AI in retail market, as it seamlessly integrates both online and offline retail experiences. Retailers are increasingly investing in omnichannel strategies to provide a consistent and personalized customer experience across all touchpoints, whether it's in-store, online, or through mobile apps. AI plays a pivotal role in this integration by offering tools that enhance customer interactions across channels, allowing for real-time personalization and improved customer service.

For example, AI-powered chatbots and virtual assistants are used to engage customers on websites and social media platforms, providing instant assistance and product recommendations. In physical stores, AI technologies such as facial recognition and in-store navigation systems are enhancing the shopping experience, allowing customers to receive personalized offers and directions. By enabling a seamless transition between physical and digital shopping, the omnichannel approach is helping retailers stay competitive and meet the demands of modern consumers, leading to increased adoption of AI in the retail sector.

Customer Relationship Management (CRM) Application is Enhancing Customer Engagement

Customer Relationship Management (CRM) is one of the fastest-growing applications of AI in retail, driven by the increasing need for retailers to enhance customer engagement and build long-term relationships. AI technologies in CRM enable retailers to gather and analyze customer data to better understand their needs, preferences, and purchasing behavior. This, in turn, allows businesses to offer personalized marketing campaigns, product recommendations, and tailored promotions that resonate with customers on an individual level.

AI-powered CRM systems also help retailers optimize customer interactions by providing real-time insights into customer inquiries, feedback, and complaints. For example, chatbots and virtual assistants can resolve customer queries instantly, while sentiment analysis tools can monitor social media and review platforms to gauge customer satisfaction and brand perception. By leveraging AI in CRM, retailers can deliver highly personalized, data-driven experiences that improve customer retention, boost sales, and increase brand loyalty.

Cardiac Arrhythmias Remain the Dominant Medical Condition Addressed by AI in Retail

In the Medical Condition segment, Cardiac Arrhythmias remain the most significant focus for AI applications in cardiology. AI-driven tools are widely used to detect, monitor, and manage various types of arrhythmias, such as atrial fibrillation and ventricular tachycardia, which are prevalent in populations with cardiovascular risk factors. AI algorithms analyze real-time data from wearables and ECG monitors to identify abnormal heart rhythms, alerting healthcare providers and enabling early intervention. As a result, AI is improving the detection and management of arrhythmias, which helps reduce hospitalizations and improve patient outcomes. The integration of AI into cardiology is leading to more accurate diagnostics and timely treatments, contributing to a reduction in mortality rates associated with these heart conditions.

North America is the Largest Region for AI in Retail Market Due to Technology Adoption and Retail Growth

North America leads the AI in Retail Market in terms of both market share and technological adoption. The U.S. and Canada have established themselves as key players in the AI-driven retail transformation due to high levels of investment in AI research and development, coupled with a strong retail sector that embraces innovative technologies. Major retail chains in North America are actively adopting AI solutions to enhance customer experiences, optimize operations, and improve profitability.

The region benefits from a robust digital infrastructure, a large consumer base, and a tech-savvy population, which accelerates the adoption of AI technologies in retail. Additionally, the presence of key AI technology companies, including IBM, Microsoft, and Google, which provide AI tools and platforms to retailers, further drives growth in the North American market. As the demand for more personalized, efficient, and data-driven retail experiences continues to rise, North America is expected to remain the dominant region for AI in retail.

Artificial Intelligence In Retail Market Share by region 2030

Leading Companies and Competitive Landscape in the AI in Retail Market

The AI in Retail Market is competitive, with several prominent players driving innovation and shaping the industry. Leading companies in the market include IBM, Microsoft, Google, SAP, and Salesforce, all of which offer AI-powered solutions for retail analytics, customer relationship management, and supply chain optimization. These companies focus on providing integrated platforms that enable retailers to leverage AI for a variety of applications, such as personalized recommendations, inventory management, and pricing optimization.

In addition to these tech giants, numerous startups and specialized firms are emerging with cutting-edge AI solutions tailored to specific retail needs, such as visual search, virtual assistants, and advanced chatbot systems. The competitive landscape is characterized by rapid innovation and collaboration, with companies continuously improving their AI algorithms to stay ahead of the curve. As AI continues to evolve, the market will likely see greater consolidation, as well as new partnerships and acquisitions, to create more comprehensive and sophisticated AI solutions for the retail sector.

Recent Developments:

  • In October 2023, Amazon unveiled a new AI-powered shopping assistant that helps customers find products more easily and provides tailored recommendations based on past purchases.
  • In September 2023, Walmart expanded its use of AI-powered chatbots for customer service, enhancing its ability to handle a broader range of customer inquiries.
  • In July 2023, Microsoft announced a partnership with a major retail chain to implement machine learning solutions to predict shopping patterns and optimize product placements in stores.
  • In June 2023, Adobe launched an AI-powered product optimization tool that helps retailers predict the best-performing products based on market trends and consumer sentiment analysis.
  • In April 2023, Shopify integrated AI-driven tools into its platform, enabling small and medium-sized retailers to optimize pricing, inventory, and customer interaction without needing specialized technical expertise.

List of Leading Companies:

  • NVIDIA Corporation
  • Microsoft Corporation
  • Google LLC
  • IBM Corporation
  • SAP SE
  • Oracle Corporation
  • Sentient Technologies
  • Intel Corporation
  • Salesforce, Inc.

Report Scope:

Report Features

Description

Market Size (2023)

USD 7.9 billion

Forecasted Value (2030)

USD 22.8 billion

CAGR (2024 – 2030)

16.3%

Base Year for Estimation

2023

Historic Year

2022

Forecast Period

2024 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Artificial Intelligence In Retail Market By Component (Solution, Service), By Technology (Machine Learning, Natural Language Processing, Chatbots, Image and Video Analytics, Swarm Intelligence), By Sales Channel (Omnichannel, Brick and Mortar, Pure-play Online Retailers), By Application (Customer Relationship Management (CRM), Supply Chain and Logistics, Inventory Management, Product Optimization, In-Store Navigation, Payment and Pricing Analytics, Virtual Assistant)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

NVIDIA Corporation, Microsoft Corporation, Google LLC, IBM Corporation, SAP SE, Oracle Corporation, Sentient Technologies, Intel Corporation, Salesforce, Inc.

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Artificial Intelligence In Retail Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030)

   4.1. Solution

   4.2. Service

5. Artificial Intelligence In Retail Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030)

   5.1. Machine Learning

   5.2. Natural Language Processing

   5.3. Chatbots

   5.4. Image and Video Analytics

   5.5. Swarm Intelligence

6. Artificial Intelligence In Retail Market, by Sales Channel (Market Size & Forecast: USD Million, 2022 – 2030)

   6.1. Omnichannel

   6.2. Brick and Mortar

   6.3. Pure-play Online Retailers

7. Artificial Intelligence In Retail Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030)

   7.1. Customer Relationship Management (CRM)

   7.2. Supply Chain and Logistics

   7.3. Inventory Management

   7.4. Product Optimization

   7.5. In-Store Navigation

   7.6. Payment and Pricing Analytics

   7.7. Virtual Assistant

   7.8. Others

8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America Artificial Intelligence In Retail Market, by Component

      8.2.7. North America Artificial Intelligence In Retail Market, by Technology

      8.2.8. North America Artificial Intelligence In Retail Market, by Sales Channel

      8.2.9. North America Artificial Intelligence In Retail Market, by Application

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US Artificial Intelligence In Retail Market, by Component

               8.2.10.1.2. US Artificial Intelligence In Retail Market, by Technology

               8.2.10.1.3. US Artificial Intelligence In Retail Market, by Sales Channel

               8.2.10.1.4. US Artificial Intelligence In Retail Market, by Application

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. NVIDIA Corporation

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Microsoft Corporation

   10.3. Google LLC

   10.4. IBM Corporation

   10.5. SAP SE

   10.6. Oracle Corporation

   10.7. Sentient technologies

   10.8. Intel Corporation

   10.9. Salesforce, Inc.

11. Appendix

Let us connect with you TOC

I have read the Terms & Conditions and Privacy Policy I agree to its terms

A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence In Retail Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence In Retail Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach - Artificial Intelligence In Retail Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Artificial Intelligence In Retail ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence In Retail Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down - Artificial Intelligence In Retail Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Let us connect with you


I have read the Terms & Conditions and Privacy Policy I agree to its terms
Available Formats
REPORT BUYING OPTIONS


Buy Now