sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the Artificial Intelligence (AI) In Breast Imaging Market was valued at USD 2.3 Billion in 2023 and will surpass USD 17.0 Billion by 2030; growing at a CAGR of 33.0% during 2024 - 2030.
The Artificial Intelligence (AI) in breast imaging market is witnessing rapid growth, driven by advancements in machine learning (ML), deep learning (DL), and other AI technologies. These innovations have the potential to revolutionize breast cancer detection and diagnosis, improving accuracy, efficiency, and patient outcomes. AI-powered breast imaging solutions are increasingly being adopted in clinical practice due to their ability to analyze vast amounts of medical data, assist radiologists in interpreting images, and detect abnormalities with high precision. The growing need for early breast cancer diagnosis and advancements in AI technology are key drivers of this market's expansion.
As healthcare systems continue to adopt digital health solutions and medical imaging technologies, AI’s role in improving the early detection and treatment of breast cancer becomes more vital. By integrating AI into mammography, ultrasound, and MRI imaging systems, healthcare providers are enhancing their diagnostic capabilities. The ongoing improvements in AI algorithms, particularly in deep learning and natural language processing, are expected to further accelerate the growth of the AI in breast imaging market.
The machine learning (ML) segment is the largest within the AI in breast imaging market, primarily due to its ability to interpret complex imaging data and provide accurate, scalable solutions. Machine learning algorithms are capable of analyzing large datasets, learning from patterns, and identifying abnormalities in breast images with remarkable accuracy. This adaptability has made ML a widely used tool in breast cancer detection and diagnosis, as it can be applied across various imaging techniques such as mammography, ultrasound, and MRI.
Moreover, ML algorithms can be trained to recognize subtle patterns in breast tissue that may not be immediately visible to the human eye, improving early detection rates and reducing false positives. This makes machine learning the go-to technology for enhancing diagnostic workflows and supporting radiologists in making more accurate assessments. As more healthcare facilities integrate AI-powered systems into their imaging practices, the machine learning segment is expected to maintain its dominance in the market.
The early diagnosis of breast cancer is the fastest-growing application of AI in breast imaging, driven by rising awareness about the importance of early detection and the need for more efficient diagnostic tools. AI algorithms are being increasingly leveraged to identify early signs of breast cancer, even in cases where tumors are too small to be detected by conventional imaging techniques. This ability to detect breast cancer at an earlier stage significantly improves the prognosis for patients and supports the growing focus on preventive healthcare.
AI tools that assist in the early diagnosis of breast cancer enable healthcare providers to detect abnormalities in mammograms, ultrasounds, and MRIs with greater accuracy, reducing the likelihood of missed diagnoses. As healthcare professionals and patients prioritize early screening and detection, the demand for AI-powered solutions in early breast cancer diagnosis is expected to grow rapidly. This makes early diagnosis the fastest-growing application in the market, with significant potential to transform breast cancer care.
Hospitals are the largest end-use segment in the AI in breast imaging market, as healthcare institutions are the primary adopters of AI technologies for diagnostic purposes. With a large number of breast cancer cases requiring timely and accurate diagnosis, hospitals are increasingly incorporating AI-driven imaging solutions into their diagnostic workflows to enhance accuracy and speed. AI systems assist radiologists by providing advanced image analysis, reducing the workload, and ensuring more reliable detection.
Hospitals benefit from AI-powered breast imaging technologies due to their ability to manage large patient volumes, integrate seamlessly with existing imaging systems, and deliver more precise and consistent results. This widespread adoption is further fueled by the growing availability of AI tools that can be easily integrated into hospital infrastructure, making it the largest and most critical end-use segment. As hospitals continue to prioritize patient care, the demand for AI in breast imaging is expected to remain strong in this sector.
North America is the largest region in the AI in breast imaging market, driven by the presence of advanced healthcare infrastructure, high healthcare spending, and significant investments in AI technologies. The United States, in particular, leads the adoption of AI in breast imaging, with numerous healthcare providers and research institutions incorporating AI tools into their diagnostic workflows. The region's strong regulatory framework, coupled with a high level of awareness about the importance of early breast cancer detection, makes it a major market for AI-powered imaging solutions.
In addition, North America is home to some of the leading companies in the AI in breast imaging market, which further fuels regional growth. The continuous demand for advanced imaging technologies in hospitals and diagnostic centers has made North America the largest market for AI-driven breast imaging solutions. As technological innovations continue to emerge, North America is expected to maintain its leadership position in the market.
The AI in breast imaging market is highly competitive, with several established players leading the development and implementation of AI-based solutions. Leading companies in the market include IBM Corporation, GE Healthcare, Siemens Healthineers, Philips Healthcare, and Aidoc, among others. These companies are focused on developing advanced AI algorithms that can accurately detect breast cancer, assist radiologists in diagnostics, and improve overall patient outcomes.
The competitive landscape is characterized by significant investments in research and development, as companies seek to innovate and stay ahead in the rapidly evolving AI space. Partnerships with healthcare institutions, regulatory approvals, and market expansion strategies are crucial for companies aiming to capture a larger market share. As the market continues to grow, both established players and emerging startups are expected to play pivotal roles in shaping the future of AI in breast imaging.
Report Features |
Description |
Market Size (2023) |
USD 2.3 Billion |
Forecasted Value (2030) |
USD 17.0 Billion |
CAGR (2024 – 2030) |
33.0% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence (AI) in Breast Imaging Market by Technology (Machine Learning, Deep Learning, Natural Language Processing), by Application (Early Diagnosis of Breast Cancer, Tumor Detection and Classification, Image Enhancement and Analysis), by End-Use (Hospitals, Diagnostic Centers, Research and Development Institutions) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Aidoc, Butterfly Network, Canon Medical Systems, Fujifilm Holdings, GE Healthcare, Hologic, Lunit, Medtronic, Mirada Medical, Philips Healthcare, ScreenPoint Medical, Siemens Healthineers, Zebra Medical Vision |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence (AI) In Breast Imaging Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Deep Learning |
4.3. Natural Language Processing |
5. Artificial Intelligence (AI) In Breast Imaging Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Early Diagnosis of Breast Cancer |
5.2. Tumor Detection and Classification |
5.3. Image Enhancement and Analysis |
5.4. Others |
6. Artificial Intelligence (AI) In Breast Imaging Market, by End-Use (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Hospitals |
6.2. Diagnostic Centers |
6.3. Research and Development Institutions |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America Artificial Intelligence (AI) In Breast Imaging Market, by Technology |
7.2.7. North America Artificial Intelligence (AI) In Breast Imaging Market, by Application |
7.2.8. North America Artificial Intelligence (AI) In Breast Imaging Market, by End-Use |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US Artificial Intelligence (AI) In Breast Imaging Market, by Technology |
7.2.9.1.2. US Artificial Intelligence (AI) In Breast Imaging Market, by Application |
7.2.9.1.3. US Artificial Intelligence (AI) In Breast Imaging Market, by End-Use |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Aidoc |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. Butterfly Network |
9.3. Canon Medical Systems |
9.4. Fujifilm Holdings |
9.5. GE Healthcare |
9.6. Hologic |
9.7. IBM Watson Health |
9.8. Lunit |
9.9. Medtronic |
9.10. Mirada Medical |
9.11. Philips Healthcare |
9.12. ScreenPoint Medical |
9.13. Siemens Healthineers |
9.14. Vuno Inc. |
9.15. Zebra Medical Vision |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence in Breast Imaging Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence in Breast Imaging Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings. Secondary ResearchSecondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies. Primary ResearchPrimary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
Market Size AssessmentA combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence in Breast Imaging Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
Data TriangulationTo ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment. |