As per Intent Market Research, the Artificial Intelligence In Biotechnology Market was valued at USD 6.0 Billion in 2024-e and will surpass USD 31.1 Billion by 2030; growing at a CAGR of 26.5% during 2025-2030.
The adoption of Artificial Intelligence (AI) in biotechnology is revolutionizing various sectors, from drug discovery to personalized medicine. By harnessing the power of AI, companies can accelerate research, improve clinical outcomes, and develop innovative solutions for complex biological challenges. The market is witnessing substantial growth as AI technologies become increasingly integrated into biotechnology workflows, enabling more efficient and accurate decision-making. As advancements continue, AI is poised to play a pivotal role in transforming the future of healthcare and life sciences.
Machine Learning Segment is Largest owing to its Versatile Applications
Machine Learning (ML) is the largest subsegment within the Artificial Intelligence in Biotechnology market, driven by its extensive use in predictive modeling, data analysis, and automation of complex biological processes. ML algorithms are utilized for a wide range of applications, including drug discovery, genetic research, and personalized medicine, where the processing of vast datasets is crucial for deriving actionable insights. The ability of machine learning to analyze large-scale biological data, detect patterns, and improve accuracy has cemented its dominance in the biotechnology sector, making it an essential tool for advancing research and development.
Precision Medicine Segment is Fastest Growing Due to Increasing Adoption of Tailored Healthcare Solutions
Precision Medicine is the fastest-growing subsegment within the Artificial Intelligence in Biotechnology market, fueled by the demand for personalized healthcare solutions. This approach focuses on tailoring medical treatments to individual patient profiles by leveraging AI-driven insights into genetic, environmental, and lifestyle data. With the ability to predict treatment outcomes and optimize therapeutic strategies, precision medicine is revolutionizing how diseases are managed, resulting in better patient outcomes and more cost-effective care. As healthcare continues to shift toward personalized approaches, the adoption of AI in precision medicine is expected to experience exponential growth.
Cloud-Based Deployment Type is Fastest Growing owing to Scalability and Accessibility
The Cloud-Based deployment type is the fastest-growing segment in the Artificial Intelligence in Biotechnology market, driven by its ability to provide scalable and accessible solutions for data-intensive applications. Cloud infrastructure allows biotechnology companies to manage vast amounts of genomic and biological data efficiently, supporting real-time collaboration and analysis. Additionally, cloud-based AI solutions enable flexibility in handling unpredictable workloads, improving operational efficiency for research and development processes. With the rise of remote work and data sharing, cloud-based AI in biotechnology is becoming increasingly essential for fostering innovation and collaboration across global research networks.
North America Region is Largest in Artificial Intelligence in Biotechnology Market
North America is the largest region in the Artificial Intelligence in Biotechnology market, primarily due to its well-established healthcare and life sciences industry, coupled with a strong emphasis on innovation and research. Leading countries such as the United States and Canada are home to many biotech giants and tech-driven startups that are leveraging AI to revolutionize drug discovery, genomics, and personalized medicine. The region's robust infrastructure for healthcare technology, investment in AI research, and presence of top-tier academic institutions contribute to its dominant position in the global market. With continuous advancements, North America is expected to maintain its leadership in AI-driven biotechnology innovations.
Leading Companies and Competitive Landscape
The Artificial Intelligence in Biotechnology market features a highly competitive landscape, with key players driving technological advancements through strategic collaborations, acquisitions, and innovative product development. Leading companies such as IBM, Microsoft, Google, and Pfizer are at the forefront, leveraging AI to enhance drug discovery, precision medicine, and genomics research. Additionally, smaller biotech firms and AI-specialized companies are entering the market, fostering a dynamic environment where collaboration and competition drive rapid innovation. The competitive landscape is further shaped by regulatory compliance, data security, and the integration of emerging technologies to meet the evolving needs of the biotechnology sector.
Recent Developments:
- Pfizer launched an AI-driven platform for identifying and developing new drug candidates, improving the efficiency of drug discovery.
- Roche acquired a biotech startup to enhance its AI capabilities in personalized healthcare solutions.
- Microsoft introduced a new AI-powered genomics tool to accelerate research in genomics and precision medicine.
- GE Healthcare partnered with a machine learning company to develop AI solutions for medical imaging diagnostics.
- Illumina collaborated with a biotech firm to implement AI in analyzing genomic data for disease detection and treatment.
List of Leading Companies:
- IBM
- Microsoft
- NVIDIA
- Pfizer
- Thermo Fisher Scientific
- Illumina
- GE Healthcare
- Roche
- Bayer
- AbbVie
- Novartis
- Lonza
- Vertex Pharmaceuticals
- WuXi AppTec
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 6.0 Billion |
Forecasted Value (2030) |
USD 31.1 Billion |
CAGR (2025 – 2030) |
26.5% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence in Biotechnology Market By Technology (Machine Learning, Natural Language Processing, Predictive Analytics, Computer Vision), By Application (Drug Discovery, Genomics & Omics, Precision Medicine, Healthcare Automation), By Deployment Type (Cloud-Based, On-Premises, Edge Computing), and By End-User Industry (Pharmaceuticals, Biotechnology Firms, Research Institutions, Healthcare Providers) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM, Microsoft, Google, NVIDIA, Pfizer, Thermo Fisher Scientific, Illumina, GE Healthcare, Roche, Bayer, AbbVie, Novartis, Lonza, Vertex Pharmaceuticals, WuXi AppTec |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence In Biotechnology Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing |
4.3. Predictive Analytics |
4.4. Computer Vision |
5. Artificial Intelligence In Biotechnology Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. Drug Discovery |
5.2. Genomics & Omics |
5.3. Precision Medicine |
5.4. Healthcare Automation |
6. Artificial Intelligence In Biotechnology Market, by Deployment Type (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Cloud-Based |
6.2. On-Premises |
6.3. Edge Computing |
7. Artificial Intelligence In Biotechnology Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. Pharmaceuticals |
7.2. Biotechnology Firms |
7.3. Research Institutions |
7.4. Healthcare Providers |
8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Artificial Intelligence In Biotechnology Market, by Technology |
8.2.7. North America Artificial Intelligence In Biotechnology Market, by Application |
8.2.8. North America Artificial Intelligence In Biotechnology Market, by Deployment Type |
8.2.9. North America Artificial Intelligence In Biotechnology Market, by End-User Industry |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Artificial Intelligence In Biotechnology Market, by Technology |
8.2.10.1.2. US Artificial Intelligence In Biotechnology Market, by Application |
8.2.10.1.3. US Artificial Intelligence In Biotechnology Market, by Deployment Type |
8.2.10.1.4. US Artificial Intelligence In Biotechnology Market, by End-User Industry |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. IBM |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Microsoft |
10.3. Google |
10.4. NVIDIA |
10.5. Pfizer |
10.6. Thermo Fisher Scientific |
10.7. Illumina |
10.8. GE Healthcare |
10.9. Roche |
10.10. Bayer |
10.11. AbbVie |
10.12. Novartis |
10.13. Lonza |
10.14. Vertex Pharmaceuticals |
10.15. WuXi AppTec |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence in Biotechnology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence in Biotechnology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence in Biotechnology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.
NA