As per Intent Market Research, the Artificial Intelligence In Agriculture Market was valued at USD 2.1 Billion in 2024-e and will surpass USD 14.4 Billion by 2030; growing at a CAGR of 37.5% during 2025-2030.
The Artificial Intelligence (AI) in agriculture market is experiencing rapid growth, driven by the increasing adoption of advanced technologies to enhance farm productivity, sustainability, and resource efficiency. AI technologies such as machine learning, computer vision, and robotics are being integrated into various agricultural applications, including precision farming, crop monitoring, and irrigation management. These innovations are helping farmers optimize yields, reduce costs, and address challenges posed by climate change and resource constraints. With significant demand from crop production, livestock farming, and agrochemical industries, AI is transforming traditional farming practices, paving the way for smarter, more sustainable agriculture worldwide.
Technology Segment is Dominated by Machine Learning, Fueling Agricultural Innovation
The technology segment in the agriculture market is witnessing rapid adoption of artificial intelligence (AI), driving innovations in farming practices across the globe. Among the various technologies transforming agriculture, Machine Learning (ML) is the largest subsegment, playing a critical role in automating decision-making processes and improving farm productivity. Machine learning algorithms are used to analyze vast amounts of data, which helps farmers in predictive analytics for crop yield forecasting, pest and disease detection, and optimizing the use of resources such as water and fertilizers.
Machine learning is increasingly being integrated into various agricultural tools, including autonomous tractors, crop monitoring systems, and precision irrigation systems. This technology allows for continuous improvement and refinement of models based on real-time data, enabling farmers to adapt quickly to changing environmental conditions and market demands. As more data is generated from sensors, satellites, and drones, machine learning's role in agriculture will expand, driving efficiency, reducing costs, and supporting sustainable farming practices worldwide.
Application Segment is Accelerated by Precision Farming, Revolutionizing Crop Management
The application segment of AI in agriculture encompasses a wide range of tools aimed at improving efficiency and crop productivity. Precision Farming is the fastest growing subsegment, revolutionizing the agricultural industry by enabling farmers to manage crops and soil on a micro-level. Through the use of sensors, drones, GPS, and satellite imaging, precision farming technologies allow for real-time monitoring of crop health, soil conditions, and environmental factors, ensuring that resources such as water, fertilizer, and pesticides are applied precisely where and when they are needed.
The primary benefit of precision farming is its ability to maximize crop yields while minimizing resource waste, which ultimately contributes to more sustainable agricultural practices. By providing actionable insights that can lead to more informed decision-making, precision farming is gaining significant traction, especially in regions with limited natural resources or in areas aiming to adopt sustainable farming practices. This subsegment is expected to continue expanding as new technologies emerge, offering more comprehensive solutions for managing large-scale farming operations efficiently.
End-User Industry Segment is Led by Crop Production, Driving Demand for AI Solutions
The end-user industry segment in AI-driven agriculture solutions includes various sectors that benefit from advanced technologies. Crop Production is the largest subsegment, accounting for a significant portion of the overall market share due to its critical importance in global food security. As global demand for food continues to rise, crop production has become a focal point for adopting AI and machine learning technologies aimed at improving efficiency, yield, and sustainability.
AI technologies like predictive analytics and machine learning are essential in crop production for tasks such as optimizing planting patterns, predicting harvest times, and identifying pest infestations early. The ability to automate various aspects of crop production through AI allows farmers to reduce labor costs, lower environmental impacts, and increase profitability. As climate change continues to pose challenges to crop production, AI-driven solutions are expected to play an even greater role in helping farmers adapt to changing conditions and meet growing food demands.
Deployment Segment is Accelerated by Cloud-Based Solutions, Enhancing AgriTech Accessibility
The deployment segment in the agricultural AI market is divided between cloud-based and on-premises solutions. Cloud-Based deployment is the fastest growing subsegment, driven by the increasing adoption of cloud technologies across industries. In agriculture, cloud-based solutions provide farmers with access to real-time data, analytics, and AI-driven insights through an internet connection, eliminating the need for costly on-premises infrastructure.
Cloud-based solutions are particularly beneficial for small to medium-sized farms, which may not have the resources for large-scale on-premises systems. By offering scalability and remote access, cloud-based platforms enable farmers to make data-driven decisions from virtually anywhere, leading to more effective crop management and reduced operational costs. The growth of cloud-based deployment is also fueled by the increasing connectivity in rural areas, making it easier for farmers to integrate AI tools into their daily operations and improve overall productivity.
North America Leads the Market, Paving the Way for AI Adoption in Agriculture
North America is the largest region in the AI in agriculture market, with the United States being at the forefront of adopting advanced technologies in farming. The region benefits from well-established infrastructure, a strong technological ecosystem, and significant investments in research and development. In addition, North America’s focus on food security and sustainable agricultural practices has spurred increased adoption of AI-driven solutions.
The integration of AI into agriculture in North America is accelerating as both large-scale commercial farms and smaller operations look for innovative ways to optimize production and reduce environmental impacts. Government support for smart farming initiatives and a growing awareness of AI’s potential benefits are expected to continue driving growth in this region, positioning North America as a leader in the global AI agriculture market.
Competitive Landscape: Leading Companies Driving AI Innovation in Agriculture
The competitive landscape in the AI in agriculture market is marked by a combination of established technology companies and agricultural specialists. IBM, Microsoft, and Deere & Company are key players leading the way with advanced AI solutions designed to improve productivity and sustainability in agriculture. These companies are at the forefront of integrating machine learning, robotics, and computer vision into agricultural processes, offering solutions like precision farming, autonomous tractors, and crop management platforms.
Additionally, companies like Trimble and Corteva Agriscience are leveraging AI technologies to enhance farm operations and improve crop yield management. As the market becomes more competitive, these companies are increasing their focus on strategic collaborations, mergers, and acquisitions to enhance their technological capabilities and expand their market share. The increasing demand for sustainable farming solutions is also prompting new entrants and startups to innovate and bring disruptive technologies into the market, further intensifying the competitive dynamics.
List of Leading Companies:
- IBM Corporation
- Microsoft Corporation
- Deere & Company
- Trimble Inc.
- AG Leader Technology
- Bosch Group
- The Climate Corporation (Bayer AG)
- CNH Industrial
- Corteva Agriscience
- Inmarsat
- XAG
- AGT Robotics
- Leaf Agriculture
- Taranis
- Ecorobotix
Recent Developments:
- Microsoft Corporation recently launched an AI-driven platform for precision agriculture to help farmers optimize crop production and minimize resource wastage.
- Deere & Company partnered with a leading AI firm to integrate machine learning technology into their autonomous tractors, aiming to improve efficiency in large-scale farming operations.
- Bayer AG (The Climate Corporation) received regulatory approval to deploy AI-powered solutions for better crop management and to enhance data-driven farming practices.
- Trimble Inc. unveiled a new AI-based farm management solution that utilizes satellite imagery and machine learning to monitor soil health and optimize irrigation.
- Corteva Agriscience acquired an AI-driven startup focused on agricultural drone technology to expand its offerings in precision agriculture.
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 2.1 Billion |
Forecasted Value (2030) |
USD 14.4 Billion |
CAGR (2025 – 2030) |
37.5% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence in Agriculture Market by Technology (Machine Learning, Computer Vision, Natural Language Processing, Robotics and Automation), by Application (Precision Farming, Crop Monitoring, Irrigation Management, Livestock Monitoring, Soil Management, Weather Forecasting), by End-User Industry (Crop Production, Livestock Farming, Aquaculture, Agrochemicals, Agricultural Equipment), and by Deployment (Cloud-Based, On-Premises); Global Insights & Forecast (2023 – 2030) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, Microsoft Corporation, Deere & Company, Trimble Inc., AG Leader Technology, Bosch Group, The Climate Corporation (Bayer AG), CNH Industrial, Corteva Agriscience, Inmarsat, XAG, AGT Robotics, Leaf Agriculture, Taranis, Ecorobotix |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
Frequently Asked Questions
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence In Agriculture Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Machine Learning |
4.2. Computer Vision |
4.3. Natural Language Processing (NLP) |
4.4. Robotics and Automation |
5. Artificial Intelligence In Agriculture Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. Precision Farming |
5.2. Crop Monitoring |
5.3. Irrigation Management |
5.4. Livestock Monitoring |
5.5. Soil Management |
5.6. Weather Forecasting |
6. Artificial Intelligence In Agriculture Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Crop Production |
6.2. Livestock Farming |
6.3. Aquaculture |
6.4. Agrochemicals |
6.5. Agricultural Equipment |
7. Artificial Intelligence In Agriculture Market, by Deployment (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. Cloud-Based |
7.2. On-Premises |
8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America Artificial Intelligence In Agriculture Market, by Technology |
8.2.7. North America Artificial Intelligence In Agriculture Market, by Application |
8.2.8. North America Artificial Intelligence In Agriculture Market, by End-User Industry |
8.2.9. North America Artificial Intelligence In Agriculture Market, by Deployment |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US Artificial Intelligence In Agriculture Market, by Technology |
8.2.10.1.2. US Artificial Intelligence In Agriculture Market, by Application |
8.2.10.1.3. US Artificial Intelligence In Agriculture Market, by End-User Industry |
8.2.10.1.4. US Artificial Intelligence In Agriculture Market, by Deployment |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. IBM Corporation |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Microsoft Corporation |
10.3. Deere & Company |
10.4. Trimble Inc. |
10.5. AG Leader Technology |
10.6. Bosch Group |
10.7. The Climate Corporation (Bayer AG) |
10.8. CNH Industrial |
10.9. Corteva Agriscience |
10.10. Inmarsat |
10.11. XAG |
10.12. AGT Robotics |
10.13. Leaf Agriculture |
10.14. Taranis |
10.15. Ecorobotix |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence in Agriculture Market . In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence in Agriculture Market . The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence in Agriculture Market . These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.