As per Intent Market Research, the Artificial Intelligence (AI) In Precision Medicine Market was valued at USD 0.9 Billion in 2024-e and will surpass USD 3.8 Billion by 2030; growing at a CAGR of 26.5% during 2025-2030.
The Artificial Intelligence (AI) in Precision Medicine market is revolutionizing healthcare by enabling tailored treatment plans based on patient-specific data. AI-driven solutions are enhancing drug discovery, diagnostics, and treatment personalization, leading to improved patient outcomes and operational efficiencies. The market is expanding rapidly, driven by advancements in AI technologies, increasing adoption of personalized medicine, and a growing emphasis on data-driven healthcare solutions. Below is an in-depth analysis of the key segments, highlighting either the largest or fastest-growing subsegments within each category.
Machine Learning Segment Is the Largest Owing to Its Versatility in Healthcare Applications
Machine learning (ML) is the dominant technology in the AI-driven precision medicine market, accounting for the largest share due to its extensive applications in predictive analytics, diagnostics, and treatment optimization. ML algorithms analyze vast datasets, including genetic information, clinical histories, and real-time patient monitoring, to generate actionable insights. Pharmaceutical and biotech companies widely leverage ML in drug discovery, reducing development timelines and costs while increasing the probability of success.
The ability of ML models to continuously learn and improve their predictions makes them indispensable in precision medicine. Companies are utilizing ML-driven tools to identify potential drug candidates, optimize clinical trials, and enhance disease diagnosis. The growing adoption of ML in genomic sequencing and personalized treatment recommendations has further solidified its position as the leading technology in this market.
Deep Learning Is the Fastest Growing Due to Advancements in Medical Imaging and Drug Discovery
Deep learning (DL) is emerging as the fastest-growing subsegment within AI in precision medicine, driven by its ability to analyze complex medical imaging data and facilitate new drug discoveries. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are being increasingly employed for disease detection, including cancer, neurological disorders, and cardiovascular conditions.
Pharmaceutical companies are leveraging DL algorithms to predict molecular interactions and enhance drug design. The integration of DL with big data analytics has accelerated the identification of biomarkers, enabling earlier disease detection and personalized therapeutic strategies. As computational power continues to increase, deep learning's adoption in precision medicine is expected to witness exponential growth.
Software Is the Largest Component Owing to High Demand for AI-Driven Platforms
Among components, the software segment dominates the AI in precision medicine market, primarily due to the widespread adoption of AI-driven platforms for data analysis, diagnostics, and treatment planning. AI-powered software solutions are being integrated into hospital management systems, research institutions, and pharmaceutical R&D pipelines.
Healthcare providers increasingly rely on AI-based software for clinical decision support systems, patient risk assessment, and automated diagnostics. The scalability and adaptability of AI software make it an essential tool in personalized medicine, allowing seamless integration with electronic health records (EHRs) and genomic databases. The continuous advancements in AI algorithms and cloud-based healthcare platforms further drive the growth of this segment.
Services Are the Fastest Growing Component Due to Increasing AI Integration Needs
The services segment is expanding rapidly as healthcare institutions and pharmaceutical companies seek AI integration and data analytics support. Consulting, implementation, and maintenance services are in high demand, helping organizations deploy AI solutions efficiently while ensuring regulatory compliance.
With the growing complexity of AI technologies, businesses require specialized expertise to optimize AI applications in precision medicine. AI-as-a-Service (AIaaS) is gaining traction, allowing companies to leverage cloud-based AI tools without extensive infrastructure investments. As AI adoption continues to grow, demand for specialized services will remain strong.
Oncology Is the Largest Therapeutic Application Owing to AI’s Role in Cancer Diagnosis and Treatment
Oncology is the leading therapeutic application of AI in precision medicine, primarily due to AI's transformative impact on cancer detection, diagnosis, and treatment planning. AI-powered imaging tools and predictive analytics models enhance early cancer detection, improving patient outcomes.
AI-driven platforms such as IBM Watson Oncology and Tempus AI analyze vast genomic datasets to recommend personalized cancer treatments. The integration of AI with liquid biopsy techniques has further strengthened its role in precision oncology, enabling non-invasive cancer diagnostics. As the global burden of cancer continues to rise, AI’s role in oncology is expected to expand significantly.
Neurology Is the Fastest Growing Application Due to AI’s Role in Early Diagnosis of Brain Disorders
Neurology is witnessing the fastest growth within AI-driven precision medicine, as AI technologies are proving instrumental in diagnosing and managing neurological disorders such as Alzheimer’s, Parkinson’s, and multiple sclerosis. AI-powered imaging solutions are improving early detection, while machine learning models analyze EEG and MRI scans to predict disease progression.
AI is also playing a critical role in personalized treatment for neurological conditions. Predictive analytics and digital biomarkers are helping tailor interventions for patients with epilepsy and neurodegenerative diseases. With the increasing prevalence of neurological disorders, AI applications in this field are set to grow rapidly.
Pharmaceutical and Biotechnology Companies Lead in AI Adoption for Drug Discovery and Development
Pharmaceutical and biotechnology firms are the largest end users of AI in precision medicine, leveraging AI to accelerate drug discovery, optimize clinical trials, and develop personalized therapies. AI-driven platforms streamline target identification, biomarker discovery, and drug repurposing, reducing costs and development timelines.
AI-powered solutions such as Insilico Medicine’s AI-based drug discovery platforms and BenevolentAI’s machine learning models have transformed R&D in pharma. As the industry shifts towards personalized medicine, AI adoption among pharmaceutical and biotech companies will continue to grow.
Healthcare Providers Are the Fastest Growing End Users Due to AI Integration in Clinical Practice
Healthcare providers are rapidly adopting AI-driven precision medicine tools to enhance patient care, diagnosis accuracy, and treatment personalization. AI-powered decision support systems assist physicians in diagnosing complex diseases and predicting treatment responses.
Hospitals and clinics are integrating AI into their workflow, using predictive analytics for early disease detection and AI-assisted imaging for improved radiology interpretations. The increasing focus on AI-driven healthcare automation and precision diagnostics is driving rapid adoption among healthcare providers.
North America Dominates the Market Due to Strong AI Adoption and Investment in Precision Medicine
North America is the largest regional market for AI in precision medicine, driven by significant investments in AI research, robust healthcare infrastructure, and a strong presence of leading AI technology companies. The U.S., in particular, leads in AI adoption, with government initiatives supporting AI-driven healthcare advancements.
Leading institutions such as the Mayo Clinic, MIT, and Stanford University are at the forefront of AI research in precision medicine. Companies like NVIDIA, Google, and IBM Watson Health continue to develop innovative AI solutions, further strengthening North America's leadership in this space.
Competitive Landscape and Leading Companies
The AI in precision medicine market is highly competitive, with key players focusing on R&D, strategic partnerships, and AI-driven innovation. Leading companies such as NVIDIA, Google, Microsoft, IBM, and Illumina are investing heavily in AI algorithms, cloud computing, and genomics-based AI solutions.
The market is witnessing increased collaboration between AI technology firms and healthcare providers. Startups like Tempus AI, PathAI, and Insilico Medicine are gaining traction, bringing AI-driven diagnostic and drug discovery solutions to the forefront. Mergers, acquisitions, and partnerships will continue to shape the competitive landscape as AI-driven precision medicine evolves.
List of Leading Companies:
- NVIDIA Corporation
- Google Inc.
- Microsoft Corporation
- IBM Corporation
- Illumina, Inc.
- Exscientia
- Insilico Medicine
- GE Healthcare
- Tempus Labs
- Siemens Healthineers AG
- BioXcel Therapeutics, Inc.
- BenevolentAI
- PathAI, Inc.
- Guardant Health
- GRAIL
Recent Developments:
- In October 2024, Google DeepMind and BioNTech announced the development of AI lab assistants designed to aid researchers in planning scientific experiments and predicting outcomes, aiming to accelerate scientific breakthroughs.
- In July 2024, Flagship Pioneering, known for creating Moderna, raised an additional $3.6 billion to apply artificial intelligence in drug discovery and early-stage clinical trials, aiming to revolutionize the biotechnology sector.
- In June 2024, Tempus AI, a health technology company specializing in precision medicine, went public on the Nasdaq, aiming to expand its AI-driven solutions in personalized healthcare.
Report Scope:
|
Report Features |
Description |
|
Market Size (2024-e) |
USD 0.9 Billion |
|
Forecasted Value (2030) |
USD 3.8 Billion |
|
CAGR (2025 – 2030) |
26.5% |
|
Base Year for Estimation |
2024-e |
|
Historic Year |
2023 |
|
Forecast Period |
2025 – 2030 |
|
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
|
Segments Covered |
Artificial Intelligence (AI) in Precision Medicine Market by Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision, Big Data Analytics), By Component (Software, Hardware, Services), By Therapeutic Application (Oncology, Cardiology, Neurology, Respiratory), By End-User (Pharmaceutical and Biotechnology Companies, Healthcare Providers, Research Institutions, Government Organizations, Patients) |
|
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
|
Major Companies |
NVIDIA Corporation (US), Google Inc. (US), Microsoft Corporation (US), IBM Corporation (US), Illumina, Inc. (US), Exscientia (UK), Insilico Medicine (US), GE Healthcare (US), Tempus Labs (US), Siemens Healthineers AG (Germany), BioXcel Therapeutics, Inc. (US), BenevolentAI (UK), PathAI, Inc. (US), Guardant Health (US), GRAIL, Inc. (US) |
|
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
Frequently Asked Questions
|
1. Introduction |
|
1.1. Market Definition |
|
1.2. Scope of the Study |
|
1.3. Research Assumptions |
|
1.4. Study Limitations |
|
2. Research Methodology |
|
2.1. Research Approach |
|
2.1.1. Top-Down Method |
|
2.1.2. Bottom-Up Method |
|
2.1.3. Factor Impact Analysis |
|
2.2. Insights & Data Collection Process |
|
2.2.1. Secondary Research |
|
2.2.2. Primary Research |
|
2.3. Data Mining Process |
|
2.3.1. Data Analysis |
|
2.3.2. Data Validation and Revalidation |
|
2.3.3. Data Triangulation |
|
3. Executive Summary |
|
3.1. Major Markets & Segments |
|
3.2. Highest Growing Regions and Respective Countries |
|
3.3. Impact of Growth Drivers & Inhibitors |
|
3.4. Regulatory Overview by Country |
|
4. Artificial Intelligence (AI) In Precision Medicine Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
|
4.1. Machine Learning |
|
4.2. Deep Learning |
|
4.3. Natural Language Processing |
|
4.4. Computer Vision |
|
4.5. Big Data Analytics |
|
5. Artificial Intelligence (AI) In Precision Medicine Market, by Component (Market Size & Forecast: USD Million, 2023 – 2030) |
|
5.1. Software |
|
5.2. Hardware |
|
5.3. Services |
|
6. Artificial Intelligence (AI) In Precision Medicine Market, by Therapeutic Application (Market Size & Forecast: USD Million, 2023 – 2030) |
|
6.1. Oncology |
|
6.2. Cardiology |
|
6.3. Neurology |
|
6.4. Respiratory |
|
6.5. Others (e.g., Nephrology, Ophthalmology) |
|
7. Artificial Intelligence (AI) In Precision Medicine Market, by End User (Market Size & Forecast: USD Million, 2023 – 2030) |
|
7.1. Pharmaceutical and Biotechnology Companies |
|
7.2. Healthcare Providers |
|
7.3. Research Institutions |
|
7.4. Government Organizations |
|
7.5. Patients |
|
8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
|
8.1. Regional Overview |
|
8.2. North America |
|
8.2.1. Regional Trends & Growth Drivers |
|
8.2.2. Barriers & Challenges |
|
8.2.3. Opportunities |
|
8.2.4. Factor Impact Analysis |
|
8.2.5. Technology Trends |
|
8.2.6. North America Artificial Intelligence (AI) In Precision Medicine Market, by Technology |
|
8.2.7. North America Artificial Intelligence (AI) In Precision Medicine Market, by Component |
|
8.2.8. North America Artificial Intelligence (AI) In Precision Medicine Market, by Therapeutic Application |
|
8.2.9. North America Artificial Intelligence (AI) In Precision Medicine Market, by End User |
|
8.2.10. By Country |
|
8.2.10.1. US |
|
8.2.10.1.1. US Artificial Intelligence (AI) In Precision Medicine Market, by Technology |
|
8.2.10.1.2. US Artificial Intelligence (AI) In Precision Medicine Market, by Component |
|
8.2.10.1.3. US Artificial Intelligence (AI) In Precision Medicine Market, by Therapeutic Application |
|
8.2.10.1.4. US Artificial Intelligence (AI) In Precision Medicine Market, by End User |
|
8.2.10.2. Canada |
|
8.2.10.3. Mexico |
|
*Similar segmentation will be provided for each region and country |
|
8.3. Europe |
|
8.4. Asia-Pacific |
|
8.5. Latin America |
|
8.6. Middle East & Africa |
|
9. Competitive Landscape |
|
9.1. Overview of the Key Players |
|
9.2. Competitive Ecosystem |
|
9.2.1. Level of Fragmentation |
|
9.2.2. Market Consolidation |
|
9.2.3. Product Innovation |
|
9.3. Company Share Analysis |
|
9.4. Company Benchmarking Matrix |
|
9.4.1. Strategic Overview |
|
9.4.2. Product Innovations |
|
9.5. Start-up Ecosystem |
|
9.6. Strategic Competitive Insights/ Customer Imperatives |
|
9.7. ESG Matrix/ Sustainability Matrix |
|
9.8. Manufacturing Network |
|
9.8.1. Locations |
|
9.8.2. Supply Chain and Logistics |
|
9.8.3. Product Flexibility/Customization |
|
9.8.4. Digital Transformation and Connectivity |
|
9.8.5. Environmental and Regulatory Compliance |
|
9.9. Technology Readiness Level Matrix |
|
9.10. Technology Maturity Curve |
|
9.11. Buying Criteria |
|
10. Company Profiles |
|
10.1. NVIDIA Corporation (US) |
|
10.1.1. Company Overview |
|
10.1.2. Company Financials |
|
10.1.3. Product/Service Portfolio |
|
10.1.4. Recent Developments |
|
10.1.5. IMR Analysis |
|
*Similar information will be provided for other companies |
|
10.2. Google Inc. (US) |
|
10.3. Microsoft Corporation (US) |
|
10.4. IBM Corporation (US) |
|
10.5. Illumina, Inc. (US) |
|
10.6. Exscientia (UK) |
|
10.7. Insilico Medicine (US) |
|
10.8. GE Healthcare (US) |
|
10.9. Tempus Labs (US) |
|
10.10. Siemens Healthineers AG (Germany) |
|
10.11. BioXcel Therapeutics, Inc. (US) |
|
10.12. BenevolentAI (UK) |
|
10.13. PathAI, Inc. (US) |
|
10.14. Guardant Health (US) |
|
10.15. GRAIL, Inc. (US) |
|
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence (AI) in Precision Medicine Market . In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence (AI) in Precision Medicine Market . The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
.jpg)
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence (AI) in Precision Medicine Market . These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
.jpg)
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.