As per Intent Market Research, the Artificial Intelligence (AI) Chip Market was valued at USD 19.4 Billion in 2024-e and will surpass USD 118.1 Billion by 2030; growing at a CAGR of 35.1% during 2025-2030.
The artificial intelligence (AI) chip market is experiencing rapid growth driven by the increasing adoption of AI technologies across multiple industries. AI chips, which are specifically designed to accelerate computations related to machine learning, deep learning, and other AI processes, are essential for powering AI-powered devices and applications. These chips are instrumental in improving the performance, scalability, and efficiency of AI systems, making them crucial for advancements in areas such as autonomous vehicles, cloud computing, and robotics. As AI continues to reshape industries, the demand for specialized AI chips is expected to soar, with several market segments contributing to this growth.
The market can be segmented based on product type, end-user industry, technology, architecture, application, and region. Each of these segments is seeing rapid development, with certain subsegments experiencing faster growth due to technological advancements, increasing investments, and the growing number of applications in emerging industries. In this market overview, we will explore the key subsegments within each segment that are driving the expansion of the AI chip market.
Product Type Segment Is Largest Owing to GPUs' Dominance in AI Applications
The product type segment of the AI chip market is largely dominated by Graphics Processing Units (GPUs). GPUs are specifically designed to handle parallel processing tasks, which makes them particularly suitable for AI workloads such as machine learning and deep learning. Their ability to process large volumes of data simultaneously allows GPUs to accelerate the training and inference processes involved in AI applications. As a result, GPUs are the preferred choice for data centers, autonomous vehicles, and other applications requiring high-performance computing.
The growing adoption of deep learning technologies across industries such as healthcare, automotive, and retail has further bolstered the demand for GPUs. As AI models become more complex, the need for powerful GPUs to handle intricate computations continues to rise. Companies such as NVIDIA have established themselves as leaders in this space by offering highly efficient GPUs tailored for AI applications. With the rapid growth of AI-powered applications, GPUs are expected to remain the largest and most influential product type in the AI chip market for the foreseeable future.
End-User Industry Segment Is Fastest Growing Owing to AI's Impact on Automotive
Among the various end-user industries, the automotive sector is experiencing the fastest growth in AI chip adoption. The automotive industry is undergoing a significant transformation with the integration of AI technologies for autonomous driving, advanced driver-assistance systems (ADAS), and smart in-car features. AI chips play a critical role in enabling these technologies, allowing vehicles to process vast amounts of data in real time, making decisions for navigation, safety, and vehicle operation.
As autonomous vehicles become a reality, the demand for AI chips in the automotive industry is expected to increase exponentially. Companies like Tesla, Waymo, and traditional automotive manufacturers are investing heavily in AI chips to enhance the capabilities of their self-driving systems. The growing focus on safety, efficiency, and innovation in automotive technology positions the automotive sector as the fastest-growing end-user industry within the AI chip market.
Technology Segment Is Fastest Growing Owing to Deep Learning Advancements
In the technology segment, deep learning is the fastest-growing subsegment. Deep learning, a subset of machine learning, involves neural networks with many layers that are capable of learning from vast amounts of unstructured data. This technology is driving advancements in fields such as natural language processing (NLP), computer vision, and autonomous systems. The need for deep learning algorithms to be supported by high-performance AI chips is growing, as these algorithms require significant computational power to train and execute effectively.
The increasing use of deep learning in applications such as image recognition, speech recognition, and predictive analytics is a major driver for this growth. As industries adopt AI technologies for better decision-making, automation, and customer experiences, deep learning's capabilities are becoming indispensable. With its ability to process complex datasets and deliver insights at scale, deep learning is expected to continue its rapid growth, making it a key subsegment within the technology segment of the AI chip market.
Architecture Segment Is Largest Owing to Parallel Architecture's Scalability
In the architecture segment of the AI chip market, parallel architecture stands out as the largest and most widely adopted design. Parallel architecture allows multiple processes to be executed simultaneously, which is ideal for handling the massive volumes of data and computations involved in AI tasks. This design enables chips to efficiently execute machine learning and deep learning algorithms, particularly in high-performance computing applications such as data centers and AI model training.
The scalability of parallel architecture makes it suitable for a wide range of applications, from edge devices to large-scale cloud infrastructures. With the continued expansion of AI technologies and the increasing complexity of AI models, the demand for parallel architecture in AI chips is expected to grow. This widespread adoption across industries such as IT, telecommunications, and automotive positions parallel architecture as the dominant architecture in the AI chip market.
Application Segment Is Fastest Growing Owing to Autonomous Vehicles' Demand
The application segment of the AI chip market is experiencing the fastest growth in the autonomous vehicles subsegment. Autonomous vehicles rely on AI chips to process data from sensors, cameras, and LiDAR systems in real time to make decisions related to navigation, obstacle detection, and overall vehicle control. As advancements in self-driving technology continue, the demand for high-performance AI chips to support these systems is rapidly increasing.
With companies like Tesla, Waymo, and other automakers pushing for autonomous driving capabilities, AI chips are essential in powering the complex algorithms and sensor systems required for self-driving vehicles. The increasing focus on vehicle safety, efficiency, and the reduction of human error is propelling the adoption of AI chips in this sector, making autonomous vehicles the fastest-growing application in the market.
Region Segment Is Largest Owing to North America's AI Leadership
In terms of regional growth, North America holds the largest share of the AI chip market. The United States, in particular, is a global leader in AI research, development, and implementation. The presence of major tech companies such as NVIDIA, Intel, and Google, along with extensive investments in AI research, has contributed to North America's dominance in the AI chip market. Additionally, the region's robust infrastructure for data centers and cloud computing, coupled with its early adoption of AI technologies, has fueled the demand for AI chips.
The United States' strong focus on AI-powered applications in sectors such as healthcare, automotive, and defense has positioned North America as a key driver of the global AI chip market. As the demand for AI chips continues to grow in these industries, North America is expected to maintain its leadership role in the market, with significant investments in innovation and AI technology development.
Competitive Landscape and Leading Companies
The AI chip market is highly competitive, with several key players leading the charge in the development and innovation of AI chip technologies. Companies such as NVIDIA, Intel, AMD, and Qualcomm are at the forefront, offering a range of products tailored to various AI applications. NVIDIA, for instance, is renowned for its GPUs, which dominate the market for deep learning and AI computing. Intel, on the other hand, has expanded its AI capabilities with its acquisition of Habana Labs, focusing on AI-optimized processors for data centers and autonomous vehicles.
In addition to these major players, a number of startups and specialized companies are also contributing to the market's growth. The competitive landscape is marked by frequent technological advancements, strategic partnerships, and acquisitions aimed at strengthening product portfolios and gaining a competitive edge. As the demand for AI-driven solutions continues to rise, these companies are expected to further invest in R&D to improve chip performance, efficiency, and power consumption. The evolving nature of the AI chip market promises ongoing innovation and heightened competition among industry leaders.
List of Leading Companies:
- NVIDIA Corporation
- Intel Corporation
- Advanced Micro Devices (AMD)
- Qualcomm Incorporated
- IBM Corporation
- Graphcore Ltd.
- Micron Technology, Inc.
- ARM Holdings
- Google LLC (TPU)
- Apple Inc.
- Xilinx Inc.
- Baidu, Inc.
- Amazon Web Services (AWS)
- Samsung Electronics
- Huawei Technologies Co., Ltd.
Recent Developments:
- NVIDIA Corporation announced the launch of its new AI-powered graphics card designed to enhance deep learning applications, optimizing performance in data centers and autonomous driving systems.
- Intel Corporation acquired Habana Labs, an AI chip startup, to boost its AI product lineup and expand its capabilities in machine learning and deep learning processing.
- Advanced Micro Devices (AMD) revealed its new AI chip optimized for data center applications, aiming to compete with NVIDIA in the deep learning and cloud computing space.
- Qualcomm Incorporated unveiled a new AI processor tailored for mobile devices, designed to optimize smartphone performance in AI tasks such as voice recognition and image processing.
- Google LLC launched its new tensor processing unit (TPU) designed for machine learning models, with a focus on improving efficiency and scalability for AI workloads in the cloud.
Report Scope:
Report Features |
Description |
Market Size (2024-e) |
USD 19.4 Billion |
Forecasted Value (2030) |
USD 118.1 Billion |
CAGR (2025 – 2030) |
35.1% |
Base Year for Estimation |
2024-e |
Historic Year |
2023 |
Forecast Period |
2025 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
Artificial Intelligence (AI) Chip Market By Product Type (Graphics Processing Units (GPUs), Application-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs), Central Processing Units (CPUs), System-on-Chip (SoC)), By End-User Industry (Automotive, Healthcare, Consumer Electronics, IT & Telecommunications, Industrial Automation, Robotics, Retail, Financial Services, Aerospace & Defense, Energy), By Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision, Reinforcement Learning), By Architecture (Parallel Architecture, Neuromorphic Architecture, Homogeneous Architecture, Heterogeneous Architecture), By Application (Cloud Computing, Edge Computing, Data Centers, Autonomous Vehicles, Robotics, Smart Homes & Cities); Global Insights & Forecast (2023 – 2030) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
NVIDIA Corporation, Intel Corporation, Advanced Micro Devices (AMD), Qualcomm Incorporated, IBM Corporation, Graphcore Ltd., Micron Technology, Inc., ARM Holdings, Google LLC (TPU), Apple Inc., Xilinx Inc., Baidu, Inc., Amazon Web Services (AWS), Samsung Electronics, Huawei Technologies Co., Ltd. |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
Frequently Asked Questions
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. Artificial Intelligence (AI) Chip Market, by Product Type (Market Size & Forecast: USD Million, 2023 – 2030) |
4.1. Graphics Processing Units (GPUs) |
4.2. Application-Specific Integrated Circuits (ASICs) |
4.3. Field-Programmable Gate Arrays (FPGAs) |
4.4. Central Processing Units (CPUs) |
4.5. System-on-Chip (SoC) |
5. Artificial Intelligence (AI) Chip Market, by End-User Industry (Market Size & Forecast: USD Million, 2023 – 2030) |
5.1. Automotive |
5.2. Healthcare |
5.3. Consumer Electronics |
5.4. IT & Telecommunications |
5.5. Industrial Automation |
5.6. Robotics |
5.7. Retail |
5.8. Financial Services |
5.9. Aerospace & Defense |
5.10. Energy |
6. Artificial Intelligence (AI) Chip Market, by Technology (Market Size & Forecast: USD Million, 2023 – 2030) |
6.1. Machine Learning |
6.2. Deep Learning |
6.3. Natural Language Processing |
6.4. Computer Vision |
6.5. Reinforcement Learning |
7. Artificial Intelligence (AI) Chip Market, by Architecture (Market Size & Forecast: USD Million, 2023 – 2030) |
7.1. Parallel Architecture |
7.2. Neuromorphic Architecture |
7.3. Homogeneous Architecture |
7.4. Heterogeneous Architecture |
8. Artificial Intelligence (AI) Chip Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030) |
8.1. Cloud Computing |
8.2. Edge Computing |
8.3. Data Centers |
8.4. Autonomous Vehicles |
8.5. Robotics |
8.6. Smart Homes & Cities |
9. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030) |
9.1. Regional Overview |
9.2. North America |
9.2.1. Regional Trends & Growth Drivers |
9.2.2. Barriers & Challenges |
9.2.3. Opportunities |
9.2.4. Factor Impact Analysis |
9.2.5. Technology Trends |
9.2.6. North America Artificial Intelligence (AI) Chip Market, by Product Type |
9.2.7. North America Artificial Intelligence (AI) Chip Market, by End-User Industry |
9.2.8. North America Artificial Intelligence (AI) Chip Market, by Technology |
9.2.9. North America Artificial Intelligence (AI) Chip Market, by Architecture |
9.2.10. North America Artificial Intelligence (AI) Chip Market, by Application |
9.2.11. By Country |
9.2.11.1. US |
9.2.11.1.1. US Artificial Intelligence (AI) Chip Market, by Product Type |
9.2.11.1.2. US Artificial Intelligence (AI) Chip Market, by End-User Industry |
9.2.11.1.3. US Artificial Intelligence (AI) Chip Market, by Technology |
9.2.11.1.4. US Artificial Intelligence (AI) Chip Market, by Architecture |
9.2.11.1.5. US Artificial Intelligence (AI) Chip Market, by Application |
9.2.11.2. Canada |
9.2.11.3. Mexico |
*Similar segmentation will be provided for each region and country |
9.3. Europe |
9.4. Asia-Pacific |
9.5. Latin America |
9.6. Middle East & Africa |
10. Competitive Landscape |
10.1. Overview of the Key Players |
10.2. Competitive Ecosystem |
10.2.1. Level of Fragmentation |
10.2.2. Market Consolidation |
10.2.3. Product Innovation |
10.3. Company Share Analysis |
10.4. Company Benchmarking Matrix |
10.4.1. Strategic Overview |
10.4.2. Product Innovations |
10.5. Start-up Ecosystem |
10.6. Strategic Competitive Insights/ Customer Imperatives |
10.7. ESG Matrix/ Sustainability Matrix |
10.8. Manufacturing Network |
10.8.1. Locations |
10.8.2. Supply Chain and Logistics |
10.8.3. Product Flexibility/Customization |
10.8.4. Digital Transformation and Connectivity |
10.8.5. Environmental and Regulatory Compliance |
10.9. Technology Readiness Level Matrix |
10.10. Technology Maturity Curve |
10.11. Buying Criteria |
11. Company Profiles |
11.1. NVIDIA Corporation |
11.1.1. Company Overview |
11.1.2. Company Financials |
11.1.3. Product/Service Portfolio |
11.1.4. Recent Developments |
11.1.5. IMR Analysis |
*Similar information will be provided for other companies |
11.2. Intel Corporation |
11.3. Advanced Micro Devices (AMD) |
11.4. Qualcomm Incorporated |
11.5. IBM Corporation |
11.6. Graphcore Ltd. |
11.7. Micron Technology, Inc. |
11.8. ARM Holdings |
11.9. Google LLC (TPU) |
11.10. Apple Inc. |
11.11. Xilinx Inc. |
11.12. Baidu, Inc. |
11.13. Amazon Web Services (AWS) |
11.14. Samsung Electronics |
11.15. Huawei Technologies Co., Ltd. |
12. Appendix |
A comprehensive market research approach was employed to gather and analyze data on The Artificial Intelligence (AI) Chip Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on Artificial Intelligence (AI) Chip Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
- Validating findings and assumptions derived from secondary research
- Gathering qualitative and quantitative data on market trends, drivers, and challenges
- Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
- Assessing the supply-side landscape, including technological advancements and recent developments
Market Size Assessment
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of Artificial Intelligence (AI) Chip Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
- Identification of key industry players and relevant revenues through extensive secondary research
- Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
- Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.