AI-Powered Storage Market By Component (Hardware, Software), By Deployment Type (On-Premises, Cloud-Based, Hybrid), By Application (Data Management, Backup and Recovery, Archiving, Analytics), By End-User Industry (IT and Telecom, BFSI, Healthcare, Retail, Manufacturing, Media and Entertainment), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the AI Powered Storage Market was valued at USD 34.0 Billion in 2024-e and will surpass USD 104.9 Billion by 2030; growing at a CAGR of 20.6% during 2025-2030.

The AI-powered storage market is rapidly evolving as organizations increasingly rely on artificial intelligence to manage and optimize large volumes of data. These advanced storage solutions integrate AI and machine learning technologies to automate data management tasks, enhance storage efficiency, and improve scalability. The market is driven by the growing demand for real-time data processing and analytics across industries such as IT, telecom, healthcare, retail, and BFSI.

Key segments within the market include hardware, software, deployment types (cloud-based, on-premises, and hybrid), and applications like data management, backup and recovery, and analytics. Cloud-based deployment is gaining traction due to its flexibility and cost-efficiency, while data management remains the largest application segment, crucial for optimizing AI operations. North America leads the market, owing to technological advancements and early adoption of AI in businesses. Competitive dynamics are shaped by major players like IBM, Dell Technologies, and Amazon Web Services, who continue to innovate and expand their offerings through strategic acquisitions and partnerships.

Hardware Segment is Largest Owing to High Demand for Physical Infrastructure

The AI-powered storage market is driven by two major components: hardware and software. While both play pivotal roles in the development of AI-based storage solutions, hardware remains the largest subsegment due to its fundamental role in supporting AI operations. As organizations continue to invest heavily in cloud and data center infrastructure, the need for advanced physical storage devices has surged. The hardware segment includes storage devices like servers, storage arrays, and high-performance disks, which are essential for handling the large volumes of data processed by AI algorithms.

The growth in data consumption and the need for more robust data management systems are pushing the demand for specialized hardware. AI storage systems require high-capacity storage drives that can efficiently handle extensive data workloads with low latency. As industries increasingly leverage AI for real-time analytics and decision-making, the demand for physical storage infrastructure is expected to remain strong, making hardware a dominant player in the AI-powered storage market.

AI Powered Storage Market Size

 Cloud-Based Segment is Fastest Growing Owing to Scalability and Flexibility

The deployment type of AI-powered storage solutions can significantly impact an organization’s operational efficiency, and the cloud-based segment is emerging as the fastest-growing. As businesses transition towards more flexible and scalable infrastructure, cloud-based storage offers distinct advantages. With cloud deployment, companies can scale their storage needs up or down, depending on demand, without heavy upfront investments in physical infrastructure. This scalability makes it particularly attractive to businesses with fluctuating data storage requirements, enabling cost-efficiency.

Cloud-based storage also provides seamless integration with other AI tools and analytics platforms, fostering better data accessibility across global teams. The increasing adoption of cloud technologies, driven by the need for remote access, collaboration, and business continuity, is expected to further accelerate the growth of the cloud-based segment. As organizations seek to maximize operational efficiency with minimal investment, cloud-based storage is set to continue its rapid expansion in the AI-powered storage landscape.

Data Management Segment is Largest Owing to Central Role in AI Operations

Data management is a critical component in AI-powered storage systems, making it the largest application subsegment in the market. As AI algorithms rely on vast datasets to make informed predictions, having an efficient data management system is essential to support AI applications. AI-powered storage solutions allow for faster data retrieval and optimization, helping businesses effectively organize and store data for analytics. Moreover, data management tools in AI systems ensure that data remains consistent, accurate, and accessible for processing, minimizing downtime and enhancing decision-making.

The importance of data management extends to industries across the board, from healthcare to manufacturing, which require real-time data processing for operational efficiency. With an increasing volume of data generated daily, AI-driven data management systems are vital for organizations looking to extract actionable insights from complex datasets. As AI continues to drive digital transformation, the need for robust data management capabilities will remain a central driver for the growth of the AI-powered storage market.

 IT and Telecom Segment is Largest Owing to Massive Data Generation

In the AI-powered storage market, the IT and telecom sector stands out as the largest end-user subsegment. This sector is characterized by the massive volumes of data generated by telecommunications networks, cloud services, and digital platforms. With the proliferation of 5G technology and the increasing adoption of Internet of Things (IoT) devices, the demand for high-performance storage solutions has surged. AI-powered storage systems are crucial for managing and processing this data in real-time, enabling telecom companies to improve network efficiency, reduce latency, and deliver enhanced customer experiences.

The IT and telecom industry also benefits from AI-powered storage solutions that optimize resource allocation, support predictive maintenance, and enhance data security. As telecom operators and IT service providers continue to roll out next-generation technologies, AI-driven storage solutions will remain integral to managing the data explosion in this sector. This growth is expected to further solidify the IT and telecom industry's position as a dominant force in the AI-powered storage market.

 North America Leads the Market Due to Technological Advancements and Early Adoption

North America is the largest region in the AI-powered storage market, largely owing to its technological advancements and early adoption of AI technologies. The region boasts a robust IT infrastructure and a high concentration of key players, including global giants like IBM, Dell, and Amazon Web Services (AWS). The United States, in particular, has seen massive investments in cloud computing and AI-driven storage solutions as businesses across sectors seek to optimize their data management capabilities. The need for high-performance computing systems and advanced data analytics further fuels the demand for AI-powered storage solutions.

Additionally, government initiatives and favorable regulations in the region have encouraged the widespread deployment of AI technologies in various industries. The rapid digital transformation of industries such as healthcare, finance, and retail, alongside the growing emphasis on data security and privacy, continues to drive the demand for AI-based storage solutions in North America. As businesses look to streamline operations and harness the power of AI, North America’s leadership in AI technology is expected to persist, ensuring its continued dominance in the AI-powered storage market.

AI Powered Storage Market Size by Region 2030

Competitive Landscape: Leading Companies Innovate to Capture Market Share

The AI-powered storage market is highly competitive, with numerous players vying for leadership through technological innovation and strategic acquisitions. Companies like IBM, Dell Technologies, NetApp, and Amazon Web Services have positioned themselves as leaders in the market by continuously enhancing their AI-driven storage solutions and expanding their cloud offerings. These organizations leverage their vast resources to provide integrated AI storage systems that meet the evolving needs of various industries.

In addition to product innovation, mergers and acquisitions (M&A) are playing a significant role in market consolidation. Companies are acquiring startups and smaller firms with specialized AI storage technologies to enhance their portfolios and strengthen their market position. The competitive landscape is also shaped by regulatory considerations, as companies must comply with stringent data protection laws in different regions. As a result, leading players in the AI-powered storage market are focused on developing scalable, secure, and cost-effective solutions to meet the diverse needs of businesses and stay ahead of emerging competitors.

List of Leading Companies:

  • IBM Corporation
  • Dell Technologies
  • NetApp Inc.
  • Hewlett Packard Enterprise (HPE)
  • Huawei Technologies Co., Ltd.
  • Intel Corporation
  • Amazon Web Services (AWS)
  • Google LLC
  • Oracle Corporation
  • Microsoft Corporation
  • Pure Storage, Inc.
  • Seagate Technology Holdings PLC
  • Western Digital Corporation
  • Hitachi Vantara
  • Fujitsu Limited

 

Recent Developments:

  • IBM has launched an AI-driven data storage solution designed to optimize cloud storage environments with predictive capabilities to enhance data management efficiency.
  • NetApp announced its acquisition of a leading AI storage software company to strengthen its AI-powered data management capabilities for enterprise customers.
  • Dell Technologies introduced new storage systems with built-in AI features to help businesses manage large-scale data efficiently and reduce storage-related costs.
  • AWS rolled out an AI-powered storage service that utilizes machine learning algorithms to automatically allocate storage based on usage patterns.
  • HPE launched an advanced AI storage solution aimed at improving the automation and scalability of enterprise data centers, particularly for AI and analytics workloads.

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 34.0 Billion

Forecasted Value (2030)

USD 104.9 Billion

CAGR (2025 – 2030)

20.6%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI-Powered Storage Market By Component (Hardware, Software), By Deployment Type (On-Premises, Cloud-Based, Hybrid), By Application (Data Management, Backup and Recovery, Archiving, Analytics), By End-User Industry (IT and Telecom, BFSI, Healthcare, Retail, Manufacturing, Media and Entertainment)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

IBM Corporation, Dell Technologies, NetApp Inc., Hewlett Packard Enterprise (HPE), Huawei Technologies Co., Ltd., Intel Corporation, Amazon Web Services (AWS), Google LLC, Oracle Corporation, Microsoft Corporation, Pure Storage, Inc., Seagate Technology Holdings PLC, Western Digital Corporation, Hitachi Vantara, Fujitsu Limited

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

Frequently Asked Questions

The AI Powered Storage Market was valued at USD 34.0 Billion in 2024-e and is expected to grow at a CAGR of over 20.6% from 2025 to 2030

AI enables storage systems to automatically optimize data storage, automate tasks like data backup and recovery, and provide predictive insights for better resource allocation.

Industries such as IT, healthcare, retail, BFSI, and media & entertainment are rapidly adopting AI-powered storage solutions to handle large amounts of data and ensure high performance.

Benefits include improved data management efficiency, reduced operational costs, enhanced data security, and optimized storage resource allocation.

AI can identify and mitigate potential security risks in real-time, using advanced algorithms to detect unusual patterns and automatically secure data against threats.

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. AI Powered Storage Market, by Component (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. Hardware

   4.2. Software

5. AI Powered Storage Market, by  Deployment Type (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. On-Premises

   5.2. Cloud-Based

   5.3. Hybrid

6. AI Powered Storage Market, by  Application (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Data Management

   6.2. Backup and Recovery

   6.3. Archiving

   6.4. Analytics

7. AI Powered Storage Market, by  End-User (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. IT and Telecom

   7.2. BFSI

   7.3. Healthcare

   7.4. Retail

   7.5. Manufacturing

   7.6. Media and Entertainment

8. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America AI Powered Storage Market, by Component

      8.2.7. North America AI Powered Storage Market, by  Deployment Type

      8.2.8. North America AI Powered Storage Market, by  Application

      8.2.9. By Country

         8.2.9.1. US

               8.2.9.1.1. US AI Powered Storage Market, by Component

               8.2.9.1.2. US AI Powered Storage Market, by  Deployment Type

               8.2.9.1.3. US AI Powered Storage Market, by  Application

         8.2.9.2. Canada

         8.2.9.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. IBM Corporation

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Dell Technologies

   10.3. NetApp Inc.

   10.4. Hewlett Packard Enterprise (HPE)

   10.5. Huawei Technologies Co., Ltd.

   10.6. Intel Corporation

   10.7. Amazon Web Services (AWS)

   10.8. Google LLC

   10.9. Oracle Corporation

   10.10. Microsoft Corporation

   10.11. Pure Storage, Inc.

   10.12. Seagate Technology Holdings PLC

   10.13. Western Digital Corporation

   10.14. Hitachi Vantara

   10.15. Fujitsu Limited

11. Appendix

A comprehensive market research approach was employed to gather and analyze data on the AI-Powered Storage Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI-Powered Storage Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -AI-Powered Storage Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI-Powered Storage Market ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI-Powered Storage Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -AI-Powered Storage Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.

  • United States+1
  • United Kingdom+44
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Swaziland+268
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358

I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options