sales@intentmarketresearch.com

  +1 463-583-2713

AI-Powered Storage Market By Storage Type (Solid-State Drives, Hard Disk Drives, Hybrid Drives), By Deployment Mode (Cloud-Based, On-Premises), By Technology (Machine Learning-Optimized Storage, Predictive Analytics-Driven Storage, AI-Enabled Data Tiering), By Application (Data Management, Predictive Maintenance, Real-Time Analytics, Automated Workload Management), By End-Use Industry (IT & Telecom, BFSI, Healthcare, Retail, Media & Entertainment), and By Region; Global Insights & Forecast (2024 – 2030)

Published: December, 2024  
|   Report ID: SE4662  
|   Semiconductor and Electronics

As per Intent Market Research, the AI-Powered Storage Market was valued at USD 20.7 billion in 2023 and will surpass USD 74.6 billion by 2030; growing at a CAGR of 18.7% during 2024 - 2030.

The AI-powered storage market is transforming data management and analysis by integrating advanced artificial intelligence technologies into storage solutions. These systems are designed to optimize data handling, enhance operational efficiency, and enable real-time insights, addressing the growing complexities of data-intensive applications. With widespread adoption across industries such as IT & telecom, healthcare, and BFSI, AI-powered storage solutions are paving the way for smarter, faster, and more cost-effective data ecosystems.

This analysis explores the largest and fastest-growing subsegments within storage type, deployment mode, technology, application, and end-use industry categories, along with insights into regional dynamics and the competitive landscape.

Solid-State Drives Segment Is Largest Owing to Performance and Durability

Solid-State Drives (SSDs) dominate the storage type category due to their high-speed data access and durability compared to traditional Hard Disk Drives (HDDs). SSDs are particularly suited for AI workloads that require rapid data retrieval and processing, making them the preferred choice in industries where performance is critical, such as IT & telecom and healthcare.

Moreover, the declining cost of SSDs has made them increasingly accessible, driving their adoption in enterprise and cloud-based storage systems. With continuous advancements in SSD technology, including higher storage capacities and improved energy efficiency, this segment is expected to maintain its leadership in the AI-powered storage market.

 AI-Powered Storage Market Size

Cloud-Based Deployment Mode Is Fastest Growing Due to Scalability

Cloud-based deployment is the fastest-growing segment, fueled by the scalability and flexibility it offers for managing AI-powered storage solutions. As organizations increasingly move their operations to the cloud, they benefit from reduced infrastructure costs, seamless upgrades, and the ability to handle fluctuating workloads with ease.

In particular, cloud-based AI storage solutions support real-time analytics and automated workload management, enabling businesses to respond to dynamic data demands effectively. Leading cloud service providers are integrating advanced AI capabilities into their storage offerings, further accelerating the growth of this segment.

Predictive Analytics-Driven Storage Is Fastest Growing Due to Proactive Insights

Predictive analytics-driven storage is the fastest-growing technology segment, driven by its ability to anticipate storage needs and optimize resource allocation. By analyzing patterns in data usage and performance, these solutions enable proactive maintenance, reducing downtime and enhancing efficiency.

Industries such as BFSI and healthcare are increasingly adopting predictive analytics-driven storage to ensure seamless operations and improve decision-making. This technology not only enhances operational resilience but also supports cost optimization, making it an attractive option for businesses looking to maximize their storage investments.

Real-Time Analytics Application Is Largest Due to Rising Demand for Instant Insights

Real-time analytics is the largest application segment in the AI-powered storage market, driven by the need for immediate data-driven insights in critical operations. This application is particularly valuable in sectors such as retail, media & entertainment, and IT & telecom, where timely decision-making directly impacts competitiveness and customer satisfaction.

AI-powered storage solutions play a pivotal role in enabling real-time data analysis by ensuring fast and reliable access to large datasets. As businesses increasingly prioritize real-time capabilities for enhancing user experiences and operational efficiency, this segment continues to lead the market.

IT & Telecom Industry Is Fastest Growing Due to Data Volume Explosion

The IT & telecom industry is the fastest-growing end-use industry, propelled by the exponential increase in data volumes and the need for efficient storage solutions. With the proliferation of 5G networks, IoT devices, and digital services, the industry faces unprecedented storage demands, which AI-powered solutions are well-equipped to address.

These storage systems not only manage large datasets efficiently but also enable advanced functionalities such as automated workload balancing and predictive maintenance. As the IT & telecom sector continues to evolve, the integration of AI-powered storage is becoming a strategic imperative, driving rapid growth in this segment.

North America Is Largest Region Owing to Technological Advancements

North America is the largest regional market for AI-powered storage, supported by a well-established technology ecosystem and high adoption rates of AI-driven solutions across various industries. The presence of leading technology companies, coupled with significant investments in AI research and development, positions the region as a global leader in this space.

Moreover, industries such as healthcare, BFSI, and media & entertainment in North America are at the forefront of adopting AI-powered storage solutions, further bolstering regional growth. Initiatives promoting cloud adoption and AI innovation continue to reinforce the region’s dominance in the market.

 AI-Powered Storage Market Size by Region 2030

Leading Companies and Competitive Landscape

The competitive landscape of the AI-powered storage market features prominent players such as IBM, Dell Technologies, NVIDIA, and HPE, which are at the forefront of innovation in AI-driven storage solutions. These companies are leveraging advanced technologies like machine learning and predictive analytics to develop storage systems tailored to the specific needs of various industries.

Emerging players are also making significant contributions by focusing on niche applications such as automated workload management and edge AI storage. Strategic partnerships, acquisitions, and investments in R&D are common strategies employed by market leaders to maintain a competitive edge. As the market continues to grow, innovation in storage technologies and integration with emerging AI capabilities will be key differentiators.

Recent Developments:

  • NetApp, Inc. launched an AI-driven storage management platform designed for cloud environments
  • Dell Technologies introduced a hybrid AI-enabled storage solution tailored for real-time analytics workloads
  • Pure Storage partnered with NVIDIA to develop AI-powered storage arrays for high-performance data processing
  • Hewlett Packard Enterprise (HPE) acquired an AI-based data storage startup to enhance its autonomous storage solutions
  • IBM Corporation announced a breakthrough in AI-based data tiering technology to optimize cost and performance in hybrid storage systems

List of Leading Companies:

  • NVIDIA Corporation
  • IBM Corporation
  • Microsoft Corporation
  • Google LLC (Alphabet Inc.)
  • Amazon Web Services (AWS)
  • NetApp, Inc.
  • Dell Technologies
  • Hewlett Packard Enterprise (HPE)
  • Pure Storage, Inc.
  • Hitachi Vantara
  • Samsung Electronics Co., Ltd.
  • Western Digital Corporation
  • Seagate Technology PLC
  • Fujitsu Ltd.
  • Oracle Corporation

Report Scope:

Report Features

Description

Market Size (2023)

USD 20.7 Billion

Forecasted Value (2030)

USD 74.6 Billion

CAGR (2024 – 2030)

18.7%

Base Year for Estimation

2023

Historic Year

2022

Forecast Period

2024 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI-Powered Storage Market By Storage Type (Solid-State Drives, Hard Disk Drives, Hybrid Drives), By Deployment Mode (Cloud-Based, On-Premises), By Technology (Machine Learning-Optimized Storage, Predictive Analytics-Driven Storage, AI-Enabled Data Tiering), By Application (Data Management, Predictive Maintenance, Real-Time Analytics, Automated Workload Management), By End-Use Industry (IT & Telecom, BFSI, Healthcare, Retail, Media & Entertainment)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

NVIDIA Corporation, IBM Corporation, Microsoft Corporation, Google LLC (Alphabet Inc.), Amazon Web Services (AWS), NetApp, Inc., Hewlett Packard Enterprise (HPE), Pure Storage, Inc., Hitachi Vantara, Samsung Electronics Co., Ltd., Western Digital Corporation, Seagate Technology PLC, and Oracle Corporation.

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. AI-Powered Storage Market, by Storage Type (Market Size & Forecast: USD Million, 2022 – 2030)

   4.1. Solid-State Drives (SSDs)

   4.2. Hard Disk Drives (HDDs)

   4.3. Hybrid Drives

5. AI-Powered Storage Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030)

   5.1. Cloud-Based

   5.2. On-Premises

6. AI-Powered Storage Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030)

   6.1. Machine Learning-Optimized Storage

   6.2. Predictive Analytics-Driven Storage

   6.3. AI-Enabled Data Tiering

   6.4. Others

7. AI-Powered Storage Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030)

   7.1. Data Management

   7.2. Predictive Maintenance

   7.3. Real-Time Analytics

   7.4. Automated Workload Management

   7.5. Others

8. AI-Powered Storage Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030)

   8.1. IT & Telecom

   8.2. BFSI

   8.3. Healthcare

   8.4. Retail

   8.5. Media & Entertainment

   8.6. Others

9. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030)

   9.1. Regional Overview

   9.2. North America

      9.2.1. Regional Trends & Growth Drivers

      9.2.2. Barriers & Challenges

      9.2.3. Opportunities

      9.2.4. Factor Impact Analysis

      9.2.5. Technology Trends

      9.2.6. North America AI-Powered Storage Market, by Storage Type

      9.2.7. North America AI-Powered Storage Market, by Deployment Mode

      9.2.8. North America AI-Powered Storage Market, by Technology

      9.2.9. North America AI-Powered Storage Market, by Application

      9.2.10. North America AI-Powered Storage Market, by End-Use Industry

      9.2.11. By Country

         9.2.11.1. US

               9.2.11.1.1. US AI-Powered Storage Market, by Storage Type

               9.2.11.1.2. US AI-Powered Storage Market, by Deployment Mode

               9.2.11.1.3. US AI-Powered Storage Market, by Technology

               9.2.11.1.4. US AI-Powered Storage Market, by Application

               9.2.11.1.5. US AI-Powered Storage Market, by End-Use Industry

         9.2.11.2. Canada

         9.2.11.3. Mexico

    *Similar segmentation will be provided for each region and country

   9.3. Europe

   9.4. Asia-Pacific

   9.5. Latin America

   9.6. Middle East & Africa

10. Competitive Landscape

   10.1. Overview of the Key Players

   10.2. Competitive Ecosystem

      10.2.1. Level of Fragmentation

      10.2.2. Market Consolidation

      10.2.3. Product Innovation

   10.3. Company Share Analysis

   10.4. Company Benchmarking Matrix

      10.4.1. Strategic Overview

      10.4.2. Product Innovations

   10.5. Start-up Ecosystem

   10.6. Strategic Competitive Insights/ Customer Imperatives

   10.7. ESG Matrix/ Sustainability Matrix

   10.8. Manufacturing Network

      10.8.1. Locations

      10.8.2. Supply Chain and Logistics

      10.8.3. Product Flexibility/Customization

      10.8.4. Digital Transformation and Connectivity

      10.8.5. Environmental and Regulatory Compliance

   10.9. Technology Readiness Level Matrix

   10.10. Technology Maturity Curve

   10.11. Buying Criteria

11. Company Profiles

   11.1. NVIDIA Corporation

      11.1.1. Company Overview

      11.1.2. Company Financials

      11.1.3. Product/Service Portfolio

      11.1.4. Recent Developments

      11.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   11.2. IBM Corporation

   11.3. Microsoft Corporation

   11.4. Google LLC (Alphabet Inc.)

   11.5. Amazon Web Services (AWS)

   11.6. NetApp, Inc.

   11.7. Dell Technologies

   11.8. Hewlett Packard Enterprise (HPE)

   11.9. Pure Storage, Inc.

   11.10. Hitachi Vantara

   11.11. Samsung Electronics Co., Ltd.

   11.12. Western Digital Corporation

   11.13. Seagate Technology PLC

   11.14. Fujitsu Ltd.

   11.15. Oracle Corporation

12. Appendix

Let us connect with you TOC

I have read the Terms & Conditions and Privacy Policy I agree to its terms

A comprehensive market research approach was employed to gather and analyze data on the AI-Powered Storage Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI-Powered Storage Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -  AI-Powered Storage Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI-Powered Storage ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI-Powered Storage Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -  AI-Powered Storage Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Let us connect with you


I have read the Terms & Conditions and Privacy Policy I agree to its terms
Available Formats
REPORT BUYING OPTIONS


Buy Now