sales@intentmarketresearch.com

  +1 463-583-2713

AI in Semiconductor Market By Component (Hardware, Software, Services), By Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), By End-Use Industry (Consumer Electronics, Automotive, IT & Telecommunications, Healthcare, Manufacturing), and By Region; Global Insights & Forecast (2024 – 2030)

Published: December, 2024  
|   Report ID: SE4650  
|   Semiconductor and Electronics

As per Intent Market Research, the AI in Semiconductor Market was valued at USD 7.9 billion in 2023 and will surpass USD 18.3 billion by 2030; growing at a CAGR of 12.7% during 2024 - 2030.

The AI in Semiconductor Market is rapidly expanding as artificial intelligence (AI) continues to permeate various industries, driving the need for specialized semiconductor solutions. Semiconductors are a critical component of AI systems, acting as the foundation for AI chips and hardware used in devices that power machine learning, deep learning, and other AI applications. The growth of AI technologies, such as autonomous systems, cloud computing, and advanced robotics, has further accelerated the demand for high-performance semiconductors tailored to these applications. Semiconductor companies are increasingly focusing on the integration of AI capabilities into their products to meet the growing demand for smarter, more efficient computing systems.

The market for AI in semiconductors is driven by the need for high-speed processing and large-scale data management, particularly in fields such as consumer electronics, automotive, and telecommunications. As more industries adopt AI technologies, semiconductor companies are responding by innovating to develop chips optimized for AI workloads. As a result, AI-enabled semiconductors are anticipated to play a pivotal role in transforming multiple sectors, creating significant opportunities for growth within this market.

Hardware Segment Is Largest Owing to the Rise of AI Processors

The Hardware segment holds the largest share in the AI in Semiconductor market, primarily driven by the increasing demand for AI processors such as Graphics Processing Units (GPUs), Application-Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs). These processors are designed to handle complex AI tasks such as deep learning and neural network training, which require high computational power. The rise of machine learning, data analytics, and artificial intelligence-based applications in various industries, particularly automotive and healthcare, has substantially increased the demand for these specialized processors.

The continued advancement in AI capabilities, particularly in edge computing and autonomous driving systems, has further boosted the demand for AI processors. Companies like NVIDIA, Intel, and AMD are leading the charge in the development of AI-specific hardware, with products tailored to accelerate AI tasks in data centers, edge devices, and AI applications. The hardware segment’s dominance is expected to continue as the demand for high-performance AI chips increases across industries.

AI in Semiconductor Market Size

Machine Learning Technology Is Fastest Growing Due to Its Broad Range of Applications

Among the technologies powering the AI in Semiconductor market, Machine Learning is the fastest growing segment. Machine learning enables systems to automatically learn and improve from experience without being explicitly programmed, making it highly valuable in applications such as natural language processing (NLP), predictive analytics, and autonomous vehicles. The integration of machine learning in semiconductor products is enhancing the performance of AI chips, allowing them to process large volumes of data efficiently and make intelligent decisions in real-time.

The increasing adoption of machine learning in industries such as automotive (for autonomous driving) and healthcare (for diagnostics and personalized medicine) is expected to drive rapid growth in this segment. Machine learning's ability to optimize semiconductor operations by automating tasks such as quality control, predictive maintenance, and supply chain management further boosts its appeal to semiconductor manufacturers. As a result, machine learning is expected to continue to dominate the technology segment, offering new opportunities for growth and innovation.

Consumer Electronics End-Use Industry Is Largest Due to High Demand for Smart Devices

The Consumer Electronics industry is the largest end-use segment in the AI in Semiconductor market. The increasing adoption of AI-powered devices such as smartphones, smart TVs, wearables, and voice assistants has driven a massive demand for semiconductors capable of supporting advanced AI technologies. Semiconductor companies are working closely with consumer electronics manufacturers to develop custom AI chips that enhance the performance of these devices, offering features such as personalized recommendations, voice recognition, and real-time image processing.

As consumer electronics evolve to incorporate AI capabilities, the demand for semiconductor solutions that can efficiently handle these tasks is expected to continue to rise. The widespread adoption of AI in consumer electronics is creating a significant market for semiconductor companies, particularly as the integration of AI into everyday devices becomes more prevalent. This trend is expected to be a key driver for market expansion in the coming years.

Asia-Pacific Region Leads the AI in Semiconductor Market Growth

The Asia-Pacific region is the fastest growing region in the AI in Semiconductor market. This growth is fueled by the strong presence of leading semiconductor manufacturers in countries like China, South Korea, Japan, and Taiwan, along with increasing investments in AI technologies. The region's dominance in electronics manufacturing and semiconductor production, combined with the rapid adoption of AI in various industries, positions it as a hub for the development and deployment of AI-enabled semiconductors.

Countries such as China are investing heavily in AI research and development, supporting local semiconductor companies that are driving innovation in AI chips. Additionally, the increasing use of AI in key sectors such as automotive, consumer electronics, and telecommunications further accelerates the demand for AI semiconductors in the region. With a growing tech-savvy consumer base and advancements in AI adoption, the Asia-Pacific region is expected to maintain its position as the fastest growing market for AI in semiconductors.

AI in Semiconductor Market Size by Region 2030

Leading Companies and Competitive Landscape

The AI in Semiconductor market is highly competitive, with several key players driving innovation and product development. Major semiconductor manufacturers such as NVIDIA, Intel, Qualcomm, and AMD are leading the market by investing in AI-specific hardware and solutions. These companies are at the forefront of developing processors and chips designed to handle the intense computational requirements of AI tasks. Additionally, smaller players and startups are emerging with specialized AI chips tailored for specific industries, such as automotive, healthcare, and industrial automation.

The competitive landscape is also shaped by collaborations and partnerships between semiconductor companies and AI technology providers, creating synergies to deliver cutting-edge solutions. As AI adoption continues to grow, the competition will intensify, with companies focusing on optimizing AI chip designs, improving energy efficiency, and reducing processing times. Companies that can innovate rapidly and meet the evolving needs of industries such as automotive, healthcare, and consumer electronics are well-positioned to lead in this expanding market.

Recent Developments:

  • In November 2024, NVIDIA launched its latest H200 Tensor Core GPU for high-performance AI applications in data centers.
  • In October 2024, Intel revealed its 5th Gen AI accelerators aimed at edge computing and IoT devices.
  • In September 2024, TSMC announced investments in a new 2nm fabrication plant to enhance AI chip production capabilities.
  • In August 2024, Qualcomm introduced a new AI-powered Snapdragon platform for next-gen smartphones.
  • In July 2024, Broadcom acquired a startup specializing in edge AI chip design to strengthen its AI portfolio.

List of Leading Companies:

  • NVIDIA Corporation
  • Intel Corporation
  • AMD (Advanced Micro Devices)
  • Qualcomm Technologies, Inc.
  • Broadcom Inc.
  • Samsung Electronics Co., Ltd.
  • TSMC (Taiwan Semiconductor Manufacturing Company)
  • ARM Holdings
  • Xilinx (A part of AMD)
  • MediaTek Inc.
  • Micron Technology, Inc.
  • Google (Tensor Processors)
  • IBM Corporation
  • Apple Inc. (AI Chips)
  • Graphcore

Report Scope:

Report Features

Description

Market Size (2023)

USD 7.9 billion

Forecasted Value (2030)

USD 18.3 billion

CAGR (2024 – 2030)

12.7%

Base Year for Estimation

2023

Historic Year

2022

Forecast Period

2024 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI in Semiconductor Market By Component (Hardware, Software, Services), By Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision), By End-Use Industry (Consumer Electronics, Automotive, IT & Telecommunications, Healthcare, Manufacturing)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

NVIDIA Corporation, Intel Corporation, AMD (Advanced Micro Devices), Qualcomm Technologies, Inc., Broadcom Inc., Samsung Electronics Co., Ltd., TSMC (Taiwan Semiconductor Manufacturing Company), ARM Holdings, Xilinx (A part of AMD), MediaTek Inc., Micron Technology, Inc., Google (Tensor Processors), IBM Corporation, Apple Inc. (AI Chips), Graphcore

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. AI in Semiconductor Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030)

   4.1. Hardware

      4.1.1. Processors

      4.1.2. Memory Devices

      4.1.3. Network Devices

   4.2. Software

      4.2.1. AI Platforms

      4.2.2. Frameworks and Tools

   4.3. Services

      4.3.1. Consulting Services

      4.3.2. Deployment and Integration Services

5. AI in Semiconductor Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030)

   5.1. Machine Learning

   5.2. Deep Learning

   5.3. Natural Language Processing

   5.4. Computer Vision

   5.5. Others

6. AI in Semiconductor Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030)

   6.1. Consumer Electronics

   6.2. Automotive

   6.3. IT & Telecommunications

   6.4. Healthcare

   6.5. Manufacturing

   6.6. Others

7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030)

   7.1. Regional Overview

   7.2. North America

      7.2.1. Regional Trends & Growth Drivers

      7.2.2. Barriers & Challenges

      7.2.3. Opportunities

      7.2.4. Factor Impact Analysis

      7.2.5. Technology Trends

      7.2.6. North America AI in Semiconductor Market, by Component

      7.2.7. North America AI in Semiconductor Market, by Technology

      7.2.8. North America AI in Semiconductor Market, by End-Use Industry

      7.2.9. By Country

         7.2.9.1. US

               7.2.9.1.1. US AI in Semiconductor Market, by Component

               7.2.9.1.2. US AI in Semiconductor Market, by Technology

               7.2.9.1.3. US AI in Semiconductor Market, by End-Use Industry

         7.2.9.2. Canada

         7.2.9.3. Mexico

    *Similar segmentation will be provided for each region and country

   7.3. Europe

   7.4. Asia-Pacific

   7.5. Latin America

   7.6. Middle East & Africa

8. Competitive Landscape

   8.1. Overview of the Key Players

   8.2. Competitive Ecosystem

      8.2.1. Level of Fragmentation

      8.2.2. Market Consolidation

      8.2.3. Product Innovation

   8.3. Company Share Analysis

   8.4. Company Benchmarking Matrix

      8.4.1. Strategic Overview

      8.4.2. Product Innovations

   8.5. Start-up Ecosystem

   8.6. Strategic Competitive Insights/ Customer Imperatives

   8.7. ESG Matrix/ Sustainability Matrix

   8.8. Manufacturing Network

      8.8.1. Locations

      8.8.2. Supply Chain and Logistics

      8.8.3. Product Flexibility/Customization

      8.8.4. Digital Transformation and Connectivity

      8.8.5. Environmental and Regulatory Compliance

   8.9. Technology Readiness Level Matrix

   8.10. Technology Maturity Curve

   8.11. Buying Criteria

9. Company Profiles

   9.1. NVIDIA Corporation

      9.1.1. Company Overview

      9.1.2. Company Financials

      9.1.3. Product/Service Portfolio

      9.1.4. Recent Developments

      9.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   9.2. Intel Corporation

   9.3. AMD (Advanced Micro Devices)

   9.4. Qualcomm Technologies, Inc.

   9.5. Broadcom Inc.

   9.6. Samsung Electronics Co., Ltd.

   9.7. TSMC (Taiwan Semiconductor Manufacturing Company)

   9.8. ARM Holdings

   9.9. Xilinx (A part of AMD)

   9.10. MediaTek Inc.

   9.11. Micron Technology, Inc.

   9.12. Google (Tensor Processors)

   9.13. IBM Corporation

   9.14. Apple Inc. (AI Chips)

   9.15. Graphcore

10. Appendix

Let us connect with you TOC

I have read the Terms & Conditions and Privacy Policy I agree to its terms

A comprehensive market research approach was employed to gather and analyze data on the AI in Semiconductor Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Semiconductor Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach - AI in Semiconductor Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Semiconductor ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Semiconductor Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down - AI in Semiconductor Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Let us connect with you


I have read the Terms & Conditions and Privacy Policy I agree to its terms
Available Formats
REPORT BUYING OPTIONS


Buy Now