sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Renewable Energy Market was valued at USD 8.9 billion in 2023 and will surpass USD 30.7 billion by 2030; growing at a CAGR of 19.3% during 2024 - 2030.
The AI in renewable energy market is evolving as technology continues to reshape the energy landscape. The integration of artificial intelligence (AI) with renewable energy sources is unlocking new opportunities for efficiency, sustainability, and cost reduction. AI applications, such as machine learning (ML), artificial neural networks (ANN), and deep learning, are being leveraged to optimize energy production, predict energy consumption patterns, and improve grid management. With the global shift toward renewable energy, AI is playing a crucial role in accelerating the adoption of wind, solar, and energy storage systems, making them more reliable and efficient.
AI technologies help address the intermittent nature of renewable energy sources like solar and wind by providing predictive analytics and enabling real-time adjustments in energy generation and distribution. Moreover, AI-driven smart grids are enhancing the ability to integrate renewable energy into existing infrastructure. The growing focus on sustainable energy, along with the increasing demand for intelligent grid systems, is expected to drive continued growth in the AI in renewable energy market. This combination of environmental impact and technological innovation is making AI a key enabler in the transition to a low-carbon energy future.
The Solutions segment is the largest driver in the AI in Renewable Energy market, fueled by its ability to optimize operations, improve energy efficiency, and support predictive maintenance. These solutions include AI-driven platforms for energy forecasting, demand response systems, and performance monitoring for renewable energy assets such as wind turbines, solar panels, and energy storage systems. Advanced algorithms analyze vast datasets, enabling real-time adjustments to enhance energy production and reduce downtime.
As renewable energy systems become more complex, AI solutions provide critical support in integrating diverse energy sources into smart grids and balancing energy supply with demand. Utilities and independent power producers are leveraging these solutions to predict weather patterns, optimize power generation, and enhance grid stability. The scalability and cost-effectiveness of these AI tools make them indispensable for companies aiming to transition to greener and more sustainable energy practices.
Machine learning (ML) is one of the most influential technologies in the AI in renewable energy market, particularly for optimizing energy generation in solar and wind sectors. By analyzing vast amounts of data from weather patterns, equipment performance, and energy production rates, ML algorithms can predict optimal energy production times, forecast demand, and reduce energy waste. In wind and solar energy generation, machine learning is used to analyze historical data and forecast weather conditions, enabling the prediction of energy production levels with high accuracy.
In solar energy, machine learning models are employed to predict the availability of sunlight and adjust solar panels' positioning for maximum energy generation. Similarly, in wind energy, ML algorithms help predict wind patterns, enabling wind turbines to adjust their blades for optimal energy production. The ability to dynamically adjust to varying conditions improves efficiency and reduces downtime, which is critical for enhancing the financial viability of renewable energy projects. As machine learning technologies advance, their impact on both solar and wind energy generation is expected to become even more profound, contributing significantly to the growth of the AI in renewable energy market.
The solar energy application segment is the largest in the AI in renewable energy market, driven by the growing global demand for sustainable power generation solutions. Solar energy is one of the most widely adopted forms of renewable energy, with both residential and commercial sectors investing heavily in solar installations. AI technologies are being increasingly integrated into solar energy systems to optimize power generation, improve energy storage, and ensure better performance of solar panels.
Machine learning algorithms are used to predict solar power output by analyzing weather forecasts, sunlight availability, and panel conditions. AI-driven solutions also optimize the management of energy storage systems, ensuring that surplus energy generated during peak sunlight hours is stored efficiently and used when needed. As solar energy becomes a critical component of the global energy transition, AI is expected to continue enhancing the efficiency and scalability of solar power systems, making it more reliable and cost-effective.
The utilities sector is the largest end-user of AI in renewable energy, owing to the industry's need for advanced technologies to manage and distribute renewable energy efficiently. Utilities are integrating AI into their operations to optimize energy distribution, reduce transmission losses, and manage the grid more effectively. The ability to incorporate renewable energy sources, such as wind and solar, into the grid without compromising stability requires sophisticated AI systems that can balance supply and demand in real-time.
AI applications in the utilities sector are helping to improve forecasting, enhance grid management, and enable better integration of renewable energy into the broader energy mix. The use of machine learning models to predict energy consumption patterns and optimize energy flow is crucial for ensuring that renewable energy is utilized most effectively. As the shift to renewable energy sources continues, utilities are expected to invest more in AI technologies to support their transition to smarter, more efficient, and sustainable energy systems.
North America is the leading region in the AI in renewable energy market, primarily driven by technological advancements, favorable government policies, and substantial investments in renewable energy projects. The United States, in particular, has been at the forefront of integrating AI with renewable energy sources, with companies and utilities heavily investing in AI-driven solutions to optimize energy production and consumption. In addition to technological development, North American governments have introduced policies and incentives that encourage the adoption of renewable energy, further driving the demand for AI technologies in this sector.
The region's well-established infrastructure, along with the strong presence of leading AI and renewable energy companies, has enabled North America to maintain its leadership in the market. Furthermore, with the increasing push for decarbonization and energy efficiency, North America is expected to continue to lead the way in adopting AI technologies to enhance the performance of renewable energy systems. As the renewable energy landscape evolves, the North American market is likely to see continued growth, with AI playing a central role in driving energy sustainability and efficiency.
The AI in renewable energy market is competitive, with several key players offering innovative solutions to optimize the integration of AI with renewable energy systems. Leading companies in this space include Google (Alphabet), IBM, Siemens, General Electric (GE), and Schneider Electric. These companies are at the forefront of developing AI-driven technologies, such as machine learning models, predictive analytics, and smart grid solutions, that help improve energy production, storage, and distribution in renewable energy systems.
The competitive landscape is evolving, with both established technology giants and specialized startups offering solutions for the renewable energy sector. Companies are increasingly collaborating with utilities and renewable energy providers to integrate AI technologies into existing energy infrastructures. As AI continues to advance, the market will see more players entering the space, offering new and innovative solutions aimed at enhancing the efficiency and sustainability of renewable energy systems. The race to develop the most effective AI-powered solutions for renewable energy will likely lead to greater innovation and competition in the coming years.
Report Features |
Description |
Market Size (2023) |
USD 8.9 billion |
Forecasted Value (2030) |
USD 30.7 billion |
CAGR (2024 – 2030) |
19.3% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Renewable Energy Market By Component (Solutions, Services), By Technology (Machine Learning (ML), Artificial Neural Networks (ANN), Deep Learning, Natural Language Processing (NLP)), By Application (Wind Energy, Solar Energy, Energy Storage Systems, Smart Grids), By End-Use Industry (Utilities, Independent Power Producers, Commercial & Industrial, Residential) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, Google LLC (Alphabet Inc.), Siemens AG, Microsoft Corporation, Schneider Electric SE, General Electric Company, Enel Green Power, Accenture plc, GridEdge Technologies, DeepMind Technologies (Acquired by Google), DNV GL Group, National Grid plc, Hitachi ABB Power Grids, NREL (National Renewable Energy Laboratory), Xcel Energy |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Renewable Energy Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Solutions |
4.1.1. AI for Energy Management |
4.1.2. Predictive Maintenance |
4.1.3. Energy Storage Optimization |
4.1.4. Grid Management |
4.1.5. Others |
4.2. Services |
4.2.1. Consulting |
4.2.2. Implementation |
4.2.3. Managed Services |
4.2.4. Others |
5. AI in Renewable Energy Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning (ML) |
5.2. Artificial Neural Networks (ANN) |
5.3. Deep Learning |
5.4. Natural Language Processing (NLP) |
5.5. Others |
6. AI in Renewable Energy Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Wind Energy |
6.2. Solar Energy |
6.3. Energy Storage Systems |
6.4. Smart Grids |
6.5. Others |
7. AI in Renewable Energy Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Utilities |
7.2. Independent Power Producers |
7.3. Commercial & Industrial |
7.4. Residential |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI in Renewable Energy Market, by Component |
8.2.7. North America AI in Renewable Energy Market, by Technology |
8.2.8. North America AI in Renewable Energy Market, by Application |
8.2.9. North America AI in Renewable Energy Market, by End-Use Industry |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI in Renewable Energy Market, by Component |
8.2.10.1.2. US AI in Renewable Energy Market, by Technology |
8.2.10.1.3. US AI in Renewable Energy Market, by Application |
8.2.10.1.4. US AI in Renewable Energy Market, by End-Use Industry |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. IBM Corporation |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Google LLC (Alphabet Inc.) |
10.3. Siemens AG |
10.4. Microsoft Corporation |
10.5. Schneider Electric SE |
10.6. General Electric Company |
10.7. Enel Green Power |
10.8. Accenture plc |
10.9. GridEdge Technologies |
10.10. DeepMind Technologies (Acquired by Google) |
10.11. DNV GL Group |
10.12. National Grid plc |
10.13. Hitachi ABB Power Grids |
10.14. NREL (National Renewable Energy Laboratory) |
10.15. Xcel Energy |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Renewable Energy Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Renewable Energy Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Renewable Energy ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Renewable Energy Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.