sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Precision Medicine Market was valued at USD 5.6 billion in 2023 and will surpass USD 16.5 billion by 2030; growing at a CAGR of 16.6% during 2024 - 2030.
The AI in precision medicine market is experiencing rapid growth as the healthcare industry moves toward more personalized treatment options tailored to an individual’s genetic makeup, lifestyle, and environment. By leveraging advanced technologies like artificial intelligence, machine learning, and natural language processing, precision medicine aims to improve treatment outcomes, reduce side effects, and enhance the efficiency of healthcare systems. AI helps process vast amounts of medical data to identify patterns, predict patient responses to treatments, and discover novel therapeutic targets. With its potential to revolutionize healthcare delivery, the AI in precision medicine market is poised for significant advancements, creating vast opportunities across technologies, applications, and end-use industries.
As AI continues to impact precision medicine, key technologies, applications, and end-user segments are driving growth in this space. The following analysis focuses on the largest and fastest-growing subsegments within each category, shedding light on the forces shaping this dynamic market.
Machine learning (ML) is the largest technology subsegment in the AI in precision medicine market, owing to its ability to analyze vast amounts of medical and genomic data. ML algorithms can identify complex patterns in datasets that would be impossible for humans to detect, making them invaluable in precision medicine applications. ML models are used to predict patient responses to treatments, recommend personalized therapies, and assist in diagnosing diseases based on patient data. Their ability to continually improve through data learning further enhances their effectiveness in medical applications.
The largest role of ML in precision medicine is in identifying biomarkers for diseases, which are key to personalizing treatment plans. By processing data from various sources like genomic sequencing, clinical records, and lifestyle factors, ML helps healthcare providers make more accurate predictions and provide treatments that are tailored to individual patients. This versatility and capability in processing large-scale data make ML the largest technology subsegment in AI-driven precision medicine.
The cancer treatment application is the fastest-growing segment in the AI in precision medicine market, driven by significant advancements in targeted therapies and early detection methods. AI technologies, particularly machine learning and deep learning, are transforming how cancers are diagnosed, classified, and treated. By analyzing large genomic datasets, AI can identify specific mutations or biomarkers that contribute to the development of cancer, enabling the development of therapies targeted to these unique characteristics. This approach not only improves the effectiveness of treatments but also minimizes side effects compared to traditional cancer therapies.
AI’s role in cancer treatment is also expanding through the development of predictive models that estimate how individual patients will respond to various treatments, allowing for more personalized and effective care. As the demand for precision oncology continues to rise, the integration of AI into cancer treatment will continue to grow rapidly, making it the fastest-growing application within the AI in precision medicine market.
Pharmaceutical companies represent the largest end-user industry in the AI in precision medicine market, largely due to their significant role in developing personalized treatments and conducting clinical trials. AI plays a pivotal role in drug discovery, where it accelerates the identification of new drug candidates, optimizes drug development processes, and improves clinical trial designs by analyzing patient data to ensure the right participants are chosen. Pharmaceutical companies are using AI to identify genetic biomarkers and predict how individual patients will respond to specific drugs, leading to more effective treatments and reduced adverse reactions.
The pharmaceutical industry’s continued investment in AI-driven research is also driving the development of next-generation therapies that are more tailored to patients' specific genetic profiles. This makes pharmaceutical companies the primary drivers of AI adoption in precision medicine, further solidifying their role as the largest end-user industry in this market.
North America is the largest region in the AI in precision medicine market, primarily driven by the presence of strong healthcare infrastructure, leading research institutions, and significant investments in AI technology. The United States, in particular, is a global leader in precision medicine research, with institutions like the National Institutes of Health (NIH) and the American Cancer Society actively promoting AI applications in healthcare. The region’s advanced healthcare systems and the widespread adoption of electronic health records (EHRs) have created a conducive environment for AI technologies to thrive, facilitating the integration of AI with medical data for personalized treatment development.
Additionally, the growing focus on precision oncology, genetic research, and drug development in North America has further accelerated the adoption of AI in precision medicine. As healthcare providers, pharmaceutical companies, and biotech firms in the region continue to lead innovation, North America will remain the dominant region in the AI in precision medicine market over the forecast period.
The competitive landscape of the AI in precision medicine market features a mix of established healthcare giants, pharmaceutical companies, and AI-focused startups. Leading companies such as IBM Watson Health, Google Health, and Tempus are making significant strides in applying AI to precision medicine. IBM Watson Health, for example, is helping to revolutionize cancer treatment by providing AI-powered insights that aid oncologists in selecting the most appropriate therapies based on individual genetic profiles. Tempus, a leader in AI-driven precision medicine, is leveraging machine learning and genomic data to offer personalized cancer care solutions.
In addition to these industry giants, several startups are emerging with innovative AI solutions tailored to precision medicine. Companies like Butterfly Network, which uses AI-powered ultrasound imaging for early diagnosis, and PathAI, which focuses on AI-powered pathology, are contributing to the rapidly evolving market. As the competition intensifies, collaborations and partnerships between AI companies and healthcare providers will likely be a key trend, enabling stakeholders to expand their technological capabilities and bring innovative precision medicine solutions to market faster.
Report Features |
Description |
Market Size (2023) |
USD 5.6 Billion |
Forecasted Value (2030) |
USD 16.5 Billion |
CAGR (2024 – 2030) |
16.6% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Precision Medicine Market By Technology (Machine Learning, Natural Language Processing, Computer Vision, Deep Learning), By Application (Cancer Treatment, Genetic Disorders, Cardiovascular Diseases, Neurological Disorders, Rare Diseases), By End-User Industry (Hospitals & Clinics, Pharmaceutical Companies, Biotechnology Companies) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Butterfly Network, Inc., Cerner Corporation, GE Healthcare, Health Catalyst, IBM Corporation, Illumina, Inc., Medtronic, Microsoft Corporation, NVIDIA Corporation, PathAI, Philips Healthcare, and Siemens Healthineers |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Precision Medicine Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Computer Vision |
4.4. Deep Learning |
4.5. Others |
5. AI in Precision Medicine Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Cancer Treatment |
5.2. Genetic Disorders |
5.3. Cardiovascular Diseases |
5.4. Neurological Disorders |
5.5. Rare Diseases |
5.6. Others |
6. AI in Precision Medicine Market, by End-User (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Hospitals & Clinics |
6.2. Pharmaceutical Companies |
6.3. Biotechnology Companies |
6.4. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Precision Medicine Market, by Technology |
7.2.7. North America AI in Precision Medicine Market, by Application |
7.2.8. North America AI in Precision Medicine Market, by End-User |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Precision Medicine Market, by Technology |
7.2.9.1.2. US AI in Precision Medicine Market, by Application |
7.2.9.1.3. US AI in Precision Medicine Market, by End-User |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Butterfly Network, Inc. |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. Cerner Corporation |
9.3. GE Healthcare |
9.4. Health Catalyst |
9.5. IBM Corporation |
9.6. Illumina, Inc. |
9.7. Johnson & Johnson |
9.8. Medtronic |
9.9. Microsoft Corporation |
9.10. NVIDIA Corporation |
9.11. PathAI |
9.12. Philips Healthcare |
9.13. Siemens Healthineers |
9.14. Tempus Labs, Inc. |
9.15. XtalPi, Inc. |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Precision Medicine Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Precision Medicine Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Precision Medicine ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Precision Medicine Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.