As per Intent Market Research, the AI in Personal Care Market was valued at USD 3.0 billion in 2023 and will surpass USD 9.2 billion by 2030; growing at a CAGR of 17.1% during 2024 - 2030.
The AI in personal care market is experiencing rapid growth as advancements in artificial intelligence technologies continue to transform the beauty and personal care industry. With the increasing demand for personalized experiences, AI is playing a pivotal role in enhancing product recommendations, optimizing skincare regimens, and offering innovative beauty solutions. Consumers are increasingly seeking products and services tailored to their unique needs, while brands are investing in AI-powered solutions to meet these demands. AI's ability to analyze consumer preferences, skin conditions, and hair types is driving the market forward, offering brands the opportunity to engage with customers on a more personalized and efficient level.
Skincare Devices Segment is Fastest Growing Owing to Increased Consumer Demand for Personalized Solutions
The skincare devices segment is the fastest-growing within the AI in personal care market. Consumers are increasingly turning to advanced skincare devices that utilize artificial intelligence to offer customized solutions. These devices are capable of analyzing skin conditions, such as dryness, wrinkles, and pigmentation, and providing personalized skincare recommendations based on real-time data. With the rise of beauty-conscious consumers and the growing trend of self-care, AI-powered skincare devices are becoming essential tools for addressing individual skincare needs. As the demand for personalized skincare solutions continues to rise, the market for AI-based skincare devices is expected to expand significantly.
AI-powered skincare devices not only help consumers choose the right products but also enable them to monitor their skin's health over time. By using sensors and algorithms, these devices can track progress, suggest improvements, and adjust skincare routines based on changing skin conditions. Additionally, with the integration of machine learning, these devices can continuously improve their recommendations, ensuring that consumers receive the most relevant advice. This growing interest in personalized beauty and skin health is expected to fuel the expansion of this segment in the coming years.
Machine Learning Technology is Largest Owing to Its Versatility and Efficiency
Machine learning, a subset of artificial intelligence, is the largest technology segment in the AI in personal care market. Its ability to process vast amounts of data and make intelligent predictions is key to delivering personalized beauty solutions. Machine learning algorithms can analyze consumer data such as skin type, preferences, and purchase behavior to offer tailored recommendations. These algorithms continuously learn from new data, improving their accuracy and relevance over time. This capability is particularly valuable in the beauty industry, where personalization is a critical factor in driving consumer engagement and loyalty.
Machine learning is also used in a variety of applications within the personal care market, including product recommendation systems, personalized skincare, and virtual beauty assistants. Its versatility allows it to be applied across multiple product categories, including skincare, haircare, and fragrance, making it an essential technology for both beauty brands and consumers. As a result, machine learning is expected to remain the dominant technology in the market, with continued investments in AI solutions that leverage its capabilities to improve consumer experiences.
Product Recommendation Application is Largest Owing to Rising Demand for Personalized Experiences
Product recommendation systems powered by artificial intelligence are the largest application within the AI in personal care market. These systems leverage consumer data, including past purchases, preferences, and browsing behavior, to provide personalized product suggestions. By analyzing this data, AI-powered recommendation engines can suggest products that are most likely to meet an individual’s needs and preferences. This personalized approach not only enhances the consumer experience but also drives sales for beauty brands by improving product discovery and customer satisfaction.
The effectiveness of AI-driven product recommendations is further enhanced by machine learning algorithms, which continuously refine their suggestions based on new data and consumer interactions. As online shopping continues to grow and e-commerce platforms become more popular for beauty product purchases, AI-powered product recommendation systems are becoming a key tool for driving consumer engagement and boosting brand loyalty. This trend is expected to fuel the growth of the product recommendation segment, making it a dominant application in the AI in personal care market.
Individual Consumers Segment is Largest Owing to Growing Demand for Personalized Beauty Solutions
The individual consumers segment is the largest end-user segment in the AI in personal care market. As consumers increasingly seek personalized beauty solutions, AI technologies are being adopted to provide tailored skincare, haircare, and fragrance recommendations. AI-powered beauty devices, apps, and services are helping individual consumers make informed decisions about the products they use, ensuring that they meet their specific needs and preferences. The rise of beauty-conscious consumers, particularly millennials and Gen Z, who are more tech-savvy and inclined towards personalized experiences, has significantly contributed to the growth of this segment.
Moreover, the accessibility of AI-based beauty solutions through smartphones and wearable devices has made it easier for individual consumers to integrate AI into their daily beauty routines. With the growing popularity of beauty apps and virtual try-on solutions, individual consumers are increasingly turning to AI technologies to enhance their beauty and self-care experiences. This trend is expected to continue, with individual consumers representing the largest end-user segment in the AI in personal care market.
Asia-Pacific Region is Fastest Growing Owing to Increasing Adoption of Beauty Tech
The Asia-Pacific (APAC) region is the fastest-growing in the AI in personal care market. Countries such as China, Japan, and South Korea have seen a significant increase in the adoption of beauty tech, driven by a tech-savvy consumer base and a strong focus on beauty and skincare. The growing trend of personalized beauty solutions, along with increasing disposable incomes and advancements in AI technology, is contributing to the rapid growth of the market in this region. Additionally, the APAC region is home to several major beauty brands that are investing heavily in AI-powered solutions to meet the demands of their consumers.
The rise of e-commerce and digital platforms in the APAC region is further boosting the demand for AI-powered beauty solutions. Consumers in this region are more inclined to explore innovative beauty technologies, such as virtual try-ons, personalized skincare devices, and AI-driven product recommendations. As a result, the APAC region is expected to continue driving the growth of the AI in personal care market, outpacing other regions in terms of adoption and market expansion.
Leading Companies and Competitive Landscape
The AI in personal care market is highly competitive, with several global beauty and technology companies leading the way in developing and implementing AI-powered solutions. Major players in the market include L'Oréal, Estée Lauder, Shiseido, Unilever, and Procter & Gamble, which are all investing heavily in AI to enhance their product offerings and improve customer experiences. Additionally, companies like Perfect Corp. and Revieve are at the forefront of providing AI-based beauty technology solutions, such as virtual try-ons, personalized skincare apps, and AI-powered beauty assistants.
The competitive landscape is also influenced by technological advancements and partnerships. For instance, collaborations between beauty companies and tech giants like Microsoft and IBM are helping to drive innovation in AI-powered beauty products. As the market continues to grow, the competition will intensify, with companies focusing on leveraging AI to offer more personalized and effective beauty solutions. The ability to integrate AI seamlessly into consumer experiences and provide tailored products will be key to gaining a competitive edge in this dynamic market.
Recent Developments:
List of Leading Companies:
Report Scope:
Report Features |
Description |
Market Size (2023) |
USD 3.0 Billion |
Forecasted Value (2030) |
USD 9.2 Billion |
CAGR (2024 – 2030) |
17.1% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Personal Care Market By Product Type (Skincare Devices, Hair Care Devices, Fragrance Devices, Personalized Beauty Products, Other Devices), By Technology (Machine Learning, Natural Language Processing, Computer Vision, Expert Systems), By Application (Product Recommendation, Personalized Skincare, Virtual Try-On Solutions, Hair Color Personalization, Beauty Assistants), By End-User (Individual Consumers, Beauty Professionals, Retailers, E-commerce Platforms) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
L'Oréal, Estée Lauder Companies, Procter & Gamble, Shiseido Co., Ltd., Johnson & Johnson, Neutrogena, Unilever, Amorepacific Corporation, Coty, Inc., Beiersdorf AG, IBM Corporation, Microsoft Corporation , Revieve Inc. , Perfect Corp. , ModiFace |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Personal Care Market, by Product Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Skincare Devices |
4.2. Hair Care Devices |
4.3. Fragrance Devices |
4.4. Personalized Beauty Products |
4.5. Other Devices |
5. AI in Personal Care Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning |
5.2. Natural Language Processing |
5.3. Computer Vision |
5.4. Expert Systems |
5.5. Others |
6. AI in Personal Care Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Product Recommendation |
6.2. Personalized Skincare |
6.3. Virtual Try-On Solutions |
6.4. Hair Color Personalization |
6.5. Beauty Assistants |
6.6. Others |
7. AI in Personal Care Market, by End-User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Individual Consumers |
7.2. Beauty Professionals |
7.3. Retailers |
7.4. E-commerce Platforms |
7.5. Others |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI in Personal Care Market, by Product Type |
8.2.7. North America AI in Personal Care Market, by Technology |
8.2.8. North America AI in Personal Care Market, by Application |
8.2.9. North America AI in Personal Care Market, by End-User |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI in Personal Care Market, by Product Type |
8.2.10.1.2. US AI in Personal Care Market, by Technology |
8.2.10.1.3. US AI in Personal Care Market, by Application |
8.2.10.1.4. US AI in Personal Care Market, by End-User |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. L'Oréal |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Estée Lauder Companies |
10.3. Procter & Gamble |
10.4. Shiseido Co., Ltd. |
10.5. Johnson & Johnson |
10.6. Neutrogena |
10.7. Unilever |
10.8. Amorepacific Corporation |
10.9. Coty, Inc. |
10.10. Beiersdorf AG |
10.11. IBM Corporation |
10.12. Microsoft Corporation |
10.13. Revieve Inc. |
10.14. Perfect Corp. |
10.15. ModiFace |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Personal Care Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Personal Care Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the E-Waste Management ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Personal Care Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.