sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI In Patient Engagement Solutions Market was valued at USD 5.7 billion in 2023 and will surpass USD 22.6 billion by 2030; growing at a CAGR of 21.7% during 2024 - 2030.
The AI in patient engagement solutions market is experiencing significant growth, driven by the increasing adoption of artificial intelligence technologies to enhance patient care, improve communication, and optimize healthcare processes. AI is revolutionizing patient engagement by providing healthcare providers with intelligent systems to interact with patients, facilitate appointment scheduling, monitor medication adherence, and manage chronic diseases. These solutions not only improve patient satisfaction but also streamline healthcare delivery, reducing operational costs for healthcare providers. The market is expanding rapidly due to the growing demand for personalized, patient-centric care and the need for more efficient management of healthcare resources.
The integration of AI into patient engagement systems enables healthcare providers to communicate with patients more effectively and automate administrative tasks. AI-driven platforms use machine learning, natural language processing, and predictive analytics to deliver tailored communication and health management services. These advancements are helping healthcare organizations engage patients beyond traditional methods, offering convenience, support, and proactive care. As the healthcare industry embraces digital transformation, AI-based patient engagement solutions are becoming integral to improving health outcomes, patient retention, and overall operational efficiency.
Software is the key component driving the growth of the AI in patient engagement solutions market. AI-powered software platforms allow healthcare providers to offer a wide range of patient engagement services, such as personalized communication, automated reminders for appointments and medication, and tools for managing chronic diseases. These platforms integrate various AI technologies like natural language processing (NLP) and machine learning to interpret and respond to patient inquiries, provide tailored health advice, and enhance the overall patient experience.
With the increasing focus on patient-centric care, AI software solutions are enabling healthcare providers to improve interactions with patients at every stage of care. These platforms can automate communication across multiple channels, including text, email, and mobile apps, making it easier for patients to access healthcare information and engage with their providers. Additionally, the use of AI software helps optimize patient flow by reducing administrative burdens and providing real-time insights into patient behavior and needs. As AI technology continues to evolve, software solutions will play an increasingly important role in delivering more efficient, personalized care and improving patient engagement.
Medication adherence is the fastest-growing application in the AI in patient engagement solutions market. AI-driven platforms are increasingly being used to monitor and enhance patient adherence to prescribed medication, which is critical for effective treatment, especially for patients with chronic diseases. Non-adherence to medication can lead to poor health outcomes, higher hospital readmission rates, and increased healthcare costs. AI solutions are addressing this challenge by providing personalized reminders, tracking medication schedules, and alerting healthcare providers if patients are not adhering to their prescriptions.
AI technologies, such as machine learning and predictive analytics, can analyze patient behavior patterns to identify individuals at risk of non-adherence. These platforms can then tailor interventions, such as sending reminders or offering support, to improve compliance. This not only helps patients manage their conditions more effectively but also reduces the burden on healthcare systems. As the prevalence of chronic diseases rises, AI-powered medication adherence solutions are playing a pivotal role in improving health outcomes and reducing long-term healthcare costs, making this the fastest-growing application in the market.
Hospitals are the largest end users of AI in patient engagement solutions, owing to their large patient populations and the complex nature of the healthcare services they provide. Hospitals are adopting AI-powered patient engagement solutions to streamline communication, improve patient satisfaction, and optimize the management of both acute and chronic conditions. With a high volume of patient interactions, hospitals are leveraging AI to automate appointment scheduling, send medication reminders, and provide post-treatment care, enhancing patient engagement and reducing administrative costs.
Hospitals are also using AI solutions to improve care coordination across multiple departments, facilitating better patient outcomes and reducing readmission rates. AI-based platforms enable hospitals to proactively engage with patients through personalized communication, ensuring that patients are well-informed about their treatment plans and recovery processes. As hospitals continue to prioritize patient-centered care and efficiency, the adoption of AI-driven patient engagement solutions is expected to expand, solidifying hospitals as the largest end users in the market.
North America is the largest region in the AI in patient engagement solutions market, driven by the advanced healthcare infrastructure, widespread adoption of AI technologies, and significant investment in healthcare innovation. The United States, in particular, leads the market due to its well-established healthcare system, high adoption rates of digital health technologies, and favorable regulatory environment for AI in healthcare. Hospitals and healthcare providers in North America are at the forefront of integrating AI-based patient engagement solutions to enhance patient care, optimize workflows, and improve patient outcomes.
The region benefits from a robust healthcare ecosystem, with a high number of healthcare providers, insurance companies, and technology companies collaborating to develop and implement AI-driven solutions. Additionally, the growing prevalence of chronic diseases and the increasing demand for personalized healthcare further drive the adoption of AI in patient engagement. As a result, North America is expected to maintain its dominant position in the AI in patient engagement solutions market in the coming years.
The AI in patient engagement solutions market is competitive, with several key players driving innovation and technology adoption. Leading companies include Cerner Corporation, IBM Watson Health, Allscripts Healthcare Solutions, McKesson Corporation, and Medtronic, all of which are leveraging AI to enhance patient engagement through software platforms, mobile apps, and integrated healthcare systems. These companies are developing solutions that improve communication, medication adherence, and patient management across various healthcare settings.
The competitive landscape is characterized by strategic partnerships, mergers and acquisitions, and a focus on research and development to advance AI technologies in patient engagement. Companies are also investing in expanding their product offerings to include more comprehensive solutions that cater to the evolving needs of healthcare providers and patients. As the market continues to grow, competition will intensify, with companies focusing on improving AI algorithms, enhancing patient-centric features, and ensuring seamless integration with existing healthcare systems to stay ahead in the market.
Report Features |
Description |
Market Size (2023) |
USD 5.7 billion |
Forecasted Value (2030) |
USD 22.6 billion |
CAGR (2024 – 2030) |
21.7% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI In Patient Engagement Solutions Market By Component (Software, Services), By Deployment Mode (Cloud-Based, On-Premise), By Application (Patient Communication, Appointment Scheduling, Medication Adherence, Post-Treatment Care, Chronic Disease Management), By End User (Hospitals, Clinics, Ambulatory Surgical Centers, Insurance Providers) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Philips Healthcare, Cerner Corporation, Medtronic plc, GE Healthcare, IBM Watson Health, Allscripts Healthcare Solutions, Qualcomm Life, HealthTap, CareMessage, Welltok, Akili Interactive |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI In Patient Engagement Solutions Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Software |
4.2. Services |
5. AI In Patient Engagement Solutions Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Cloud-Based |
5.2. On-Premise |
6. AI In Patient Engagement Solutions Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Patient Communication |
6.2. Appointment Scheduling |
6.3. Medication Adherence |
6.4. Post-Treatment Care |
6.5. Chronic Disease Management |
6.6. Others |
7. AI In Patient Engagement Solutions Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Hospitals |
7.2. Clinics |
7.3. Ambulatory Surgical Centers |
7.4. Insurance Providers |
7.5. Others |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI In Patient Engagement Solutions Market, by Component |
8.2.7. North America AI In Patient Engagement Solutions Market, by Deployment Mode |
8.2.8. North America AI In Patient Engagement Solutions Market, by Application |
8.2.9. North America AI In Patient Engagement Solutions Market, by End User |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI In Patient Engagement Solutions Market, by Component |
8.2.10.1.2. US AI In Patient Engagement Solutions Market, by Deployment Mode |
8.2.10.1.3. US AI In Patient Engagement Solutions Market, by Application |
8.2.10.1.4. US AI In Patient Engagement Solutions Market, by End User |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. Philips Healthcare |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Cerner Corporation |
10.3. Medtronic plc |
10.4. GE Healthcare |
10.5. IBM Watson Health |
10.6. Allscripts Healthcare Solutions |
10.7. Qualcomm Life |
10.8. HealthTap |
10.9. CareMessage |
10.10. Welltok |
10.11. Akili Interactive |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI In Patient Engagement Solutions Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI In Patient Engagement Solutions Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI In Patient Engagement Solutions ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI In Patient Engagement Solutions Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.