sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Patient Engagement Market was valued at USD 5.9 billion in 2023 and will surpass USD 21.8 billion by 2030; growing at a CAGR of 20.5% during 2024 - 2030.
The AI in Patient Engagement market is evolving rapidly as healthcare providers and organizations increasingly recognize the importance of personalized, accessible, and efficient patient interaction. AI technologies, including machine learning and natural language processing, are driving transformative solutions in patient engagement by enabling healthcare providers to monitor, assess, and interact with patients in real-time. These innovations improve patient adherence, streamline communication, and promote proactive health management, significantly enhancing the overall patient experience and healthcare outcomes. The rising demand for digital health tools, combined with advancements in AI, has positioned this market for substantial growth in the coming years.
Machine learning (ML) has emerged as the largest segment within the technology category of the AI in Patient Engagement market due to its broad range of applications and effectiveness in analyzing patient data. ML algorithms can identify patterns, predict health outcomes, and tailor engagement strategies based on individual patient needs. This adaptability makes ML crucial for hospitals and clinics aiming to deliver personalized healthcare services. In addition, ML is instrumental in identifying early signs of health deterioration, allowing healthcare providers to intervene promptly and engage patients in timely preventive care.
With continued advancements, the ML segment is anticipated to grow as healthcare providers rely more on data-driven insights to shape patient engagement practices. ML-driven tools offer actionable insights that empower healthcare providers to engage patients with customized interventions, notifications, and reminders, thereby enhancing adherence to treatment plans and improving overall patient satisfaction.
Cloud-based solutions have seen rapid growth within the deployment mode segment, largely due to their scalability, accessibility, and cost-effectiveness. These solutions allow healthcare providers to access and store large volumes of patient data securely, facilitating seamless integration with other healthcare systems. Cloud-based AI patient engagement platforms enable real-time interactions, which are essential for continuous patient monitoring and timely interventions, particularly in chronic disease management.
As healthcare facilities increasingly shift towards digital transformation, cloud-based platforms are expected to expand further, driven by their ease of implementation and low infrastructure costs. Cloud solutions also support remote access, allowing patients and providers to stay connected regardless of physical location. This is particularly valuable in regions with limited access to healthcare facilities, making cloud-based solutions integral to expanding healthcare reach and patient engagement.
In the application segment, patient monitoring leads as the largest subsegment due to the growing emphasis on proactive health management. AI-driven patient monitoring tools track various health metrics, enabling continuous health assessment and early detection of potential health risks. This real-time monitoring approach is particularly beneficial for managing chronic conditions such as diabetes and cardiovascular diseases, where constant engagement and adherence to health plans are crucial.
Patient monitoring solutions support healthcare providers by delivering insights that allow for timely interventions and personalized care plans, which improve patient outcomes and satisfaction. As healthcare organizations increasingly adopt patient-centered approaches, patient monitoring solutions are projected to maintain their dominance in this segment, offering critical support for both in-hospital and remote care.
Within the end-use segment, the enterprise segment—which includes hospitals, clinics, and insurance companies—is the fastest-growing due to the rising adoption of AI-driven engagement solutions by healthcare providers and payers. These institutions are recognizing the benefits of AI in enhancing patient satisfaction, optimizing clinical workflows, and reducing operational costs. By integrating AI in patient engagement strategies, enterprises can ensure better patient retention, reduced readmission rates, and more effective communication channels, ultimately leading to higher quality care.
The enterprise segment’s rapid growth is supported by strategic investments in digital health and AI, as healthcare providers increasingly adopt these solutions to improve care coordination, optimize resources, and streamline patient interactions. This trend is expected to continue, with enterprises further investing in AI-powered engagement platforms to meet growing patient expectations for efficient and responsive care.
North America is the largest region in the AI in Patient Engagement market, driven by advanced healthcare infrastructure, significant investments in digital health, and high adoption rates of AI technologies. The United States, in particular, has a strong focus on improving patient experience, leading healthcare providers to invest in AI-based engagement tools. Furthermore, a robust regulatory framework supporting the use of health IT systems and patient data analytics has catalyzed the adoption of AI in this region.
As healthcare organizations in North America continue to prioritize patient-centered care, the demand for AI-enabled patient engagement solutions is expected to remain strong. Additionally, the region’s leading technology firms and healthcare institutions are collaborating to drive innovations, further strengthening North America’s position in this market.
The AI in Patient Engagement market is marked by intense competition among key players aiming to innovate and expand their solution offerings. Leading companies in this market include Microsoft, IBM, Cerner Corporation, and Salesforce, which offer comprehensive platforms and solutions tailored to meet the evolving needs of healthcare providers. These players are leveraging partnerships, mergers, and acquisitions to expand their capabilities and enhance market reach. Furthermore, new entrants are exploring niche applications and service models, adding to the competitive dynamics of the market.
The competitive landscape is expected to intensify as companies invest in research and development to differentiate their solutions, with a particular focus on integrating advanced analytics, machine learning, and real-time engagement features. As the market grows, partnerships between healthcare providers and technology firms will play a crucial role in advancing AI-driven patient engagement solutions, contributing to overall industry growth and patient care transformation.
Report Features |
Description |
Market Size (2023) |
USD 5.9 Billion |
Forecasted Value (2030) |
USD 21.8 Billion |
CAGR (2024 – 2030) |
20.5% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Patient Engagement Market by Technology (Machine Learning, Natural Language Processing, Computer Vision, Speech Recognition), by Component (Solutions, Services, Managed Services, Professional Services), by Application (Screening & Diagnosis, Therapy Assistance, Patient Monitoring, Behavior & Mood Tracking, Risk Assessment & Predictive Analytics), by End User (Hospitals & Clinics, Research & Academic Institutes, Mental Health Centers, Individual Users), by Deployment Mode (Cloud-Based, On-Premises) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Allscripts Healthcare Solutions, Amazon Web Services (AWS), Cerner Corporation, Cognizant Healthcare Solutions, Epic Systems Corporation, GE Healthcare, Google Health, IBM Watson Health, Medtronic, Microsoft Healthcare, Nuance Communications, Oracle Health Sciences, Philips Healthcare, Salesforce Health Cloud, Siemens Healthineers |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI In Patient Engagement Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning (ML) |
4.2. Natural Language Processing (NLP) |
4.3. Predictive Analytics |
4.4. Speech Recognition |
4.5. Computer Vision |
4.6. Others |
5. AI In Patient Engagement Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Solutions |
5.2. Services |
5.3. Managed Services |
5.4. Professional Services |
6. AI In Patient Engagement Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Patient Education |
6.2. Medication Adherence |
6.3. Appointment Scheduling |
6.4. Health Monitoring |
6.5. Feedback & Surveys |
6.6. Others |
7. AI In Patient Engagement Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Hospitals & Clinics |
7.2. Pharmaceutical Companies |
7.3. Health Insurance Companies |
7.4. Individuals |
7.5. Others |
8. AI In Patient Engagement Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Cloud-Based |
8.2. On-Premises |
9. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
9.1. Regional Overview |
9.2. North America |
9.2.1. Regional Trends & Growth Drivers |
9.2.2. Barriers & Challenges |
9.2.3. Opportunities |
9.2.4. Factor Impact Analysis |
9.2.5. Technology Trends |
9.2.6. North America AI In Patient Engagement Market, by Technology |
9.2.7. North America AI In Patient Engagement Market, by Component |
9.2.8. North America AI In Patient Engagement Market, by Application |
9.2.9. North America AI In Patient Engagement Market, by End User |
9.2.10. North America AI In Patient Engagement Market, by Deployment Mode |
9.2.11. By Country |
9.2.11.1. US |
9.2.11.1.1. US AI In Patient Engagement Market, by Technology |
9.2.11.1.2. US AI In Patient Engagement Market, by Component |
9.2.11.1.3. US AI In Patient Engagement Market, by Application |
9.2.11.1.4. US AI In Patient Engagement Market, by End User |
9.2.11.1.5. US AI In Patient Engagement Market, by Deployment Mode |
9.2.11.2. Canada |
9.2.11.3. Mexico |
*Similar segmentation will be provided for each region and country |
9.3. Europe |
9.4. Asia-Pacific |
9.5. Latin America |
9.6. Middle East & Africa |
10. Competitive Landscape |
10.1. Overview of the Key Players |
10.2. Competitive Ecosystem |
10.2.1. Level of Fragmentation |
10.2.2. Market Consolidation |
10.2.3. Product Innovation |
10.3. Company Share Analysis |
10.4. Company Benchmarking Matrix |
10.4.1. Strategic Overview |
10.4.2. Product Innovations |
10.5. Start-up Ecosystem |
10.6. Strategic Competitive Insights/ Customer Imperatives |
10.7. ESG Matrix/ Sustainability Matrix |
10.8. Manufacturing Network |
10.8.1. Locations |
10.8.2. Supply Chain and Logistics |
10.8.3. Product Flexibility/Customization |
10.8.4. Digital Transformation and Connectivity |
10.8.5. Environmental and Regulatory Compliance |
10.9. Technology Readiness Level Matrix |
10.10. Technology Maturity Curve |
10.11. Buying Criteria |
11. Company Profiles |
11.1. Allscripts Healthcare Solutions |
11.1.1. Company Overview |
11.1.2. Company Financials |
11.1.3. Product/Service Portfolio |
11.1.4. Recent Developments |
11.1.5. IMR Analysis |
*Similar information will be provided for other companies |
11.2. Amazon Web Services (AWS) |
11.3. Cerner Corporation |
11.4. Cognizant Healthcare Solutions |
11.5. Epic Systems Corporation |
11.6. GE Healthcare |
11.7. Google Health |
11.8. IBM Watson Health |
11.9. Medtronic |
11.10. Microsoft Healthcare |
11.11. Nuance Communications |
11.12. Oracle Health Sciences |
11.13. Philips Healthcare |
11.14. Salesforce Health Cloud |
11.15. Siemens Healthineers |
12. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI In Patient Engagement Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI In Patient Engagement Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI In Patient Engagement ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI In Patient Engagement Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.