sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI In Mental Health Market was valued at USD 1.1 billion in 2023 and will surpass USD 10.0 billion by 2030; growing at a CAGR of 36.9% during 2024 - 2030.
The AI in mental health market has been rapidly expanding due to increasing awareness and the demand for personalized, efficient, and scalable mental health solutions. With the advancements in artificial intelligence (AI) technologies, solutions for mental health care have become more accessible, providing improved diagnostics, therapy, and patient care. AI technologies like machine learning (ML), natural language processing (NLP), and speech recognition are revolutionizing mental health care delivery by enabling better patient outcomes and operational efficiency. The market's growth is driven by rising mental health issues, the growing need for mental health professionals, and the ability of AI to offer support at scale. As more organizations adopt AI technologies, the future of mental health services looks increasingly data-driven and precise, offering promise for both providers and patients alike.
Machine learning (ML) has emerged as the largest technology segment in the AI in mental health market, owing to its wide applicability in predictive analysis, pattern recognition, and data-driven decision-making. ML algorithms can analyze vast amounts of data and generate insights that improve mental health care. For instance, ML models can predict the onset of mental health conditions, recommend treatments, and assist in diagnostics based on data from various sources such as clinical records and patient histories. These capabilities make ML indispensable for mental health professionals, who can rely on AI-powered tools to augment their diagnosis and treatment plans. The increasing adoption of ML technologies across hospitals, clinics, and research institutes further supports the growth of this segment.
In the AI in mental health market, the solutions component holds the largest share due to the broad range of applications AI-powered solutions provide. AI-based solutions for mental health include software for screening and diagnosis, therapy assistance, patient monitoring, and predictive analytics. These solutions help healthcare providers automate workflows, monitor patient behavior in real time, and support mental health assessments with data-driven insights. With the increasing demand for innovative mental health services, solutions are increasingly being integrated into hospitals, clinics, and mental health centers. Furthermore, with the growing need for continuous monitoring and data tracking for mental health patients, solutions that offer real-time feedback and decision-making support are becoming critical for improving overall patient care.
The risk assessment and predictive analytics application segment is the fastest growing in the AI in mental health market. Predictive analytics uses data-driven algorithms to analyze patterns in a patient’s behavior, physical health data, and medical history, predicting the risk of future mental health episodes or disorders. The growing interest in preventative care, especially in mental health, is driving the adoption of predictive analytics as it allows early intervention, reducing the burden of mental health crises. This segment also benefits from technological advances in machine learning and data analytics, allowing AI to offer more accurate predictions. As healthcare providers continue to focus on proactive and preventative mental health solutions, the demand for risk assessment tools is projected to accelerate.
The largest end-user segment in the AI in mental health market is hospitals and clinics, owing to their increasing reliance on AI technologies for diagnosis, therapy, and patient monitoring. Hospitals and clinics are at the forefront of adopting AI-driven mental health solutions to manage rising patient volumes, reduce healthcare costs, and provide more effective care. AI applications such as screening, diagnosis, and patient monitoring are being integrated into mental health departments to assist clinicians in delivering timely interventions. As the global mental health crisis continues to expand, healthcare providers are leveraging AI to ensure that patients receive the best care possible, while also streamlining operations. This trend is expected to persist as healthcare systems look to digitalize and automate various processes to improve efficiency and outcomes.
Cloud-based deployment is the fastest-growing mode in the AI in mental health market. Cloud-based AI solutions offer numerous benefits, including scalability, flexibility, and cost-effectiveness. Mental health providers can access cloud-based platforms from any location, enabling remote diagnosis, therapy assistance, and monitoring services. Cloud-based platforms also allow for the secure storage and management of patient data, which is critical for the privacy and confidentiality of sensitive mental health information. Additionally, cloud-based solutions are increasingly being favored due to their ease of integration with existing healthcare systems, further fueling the segment’s growth. As the demand for remote mental health services and telemedicine grows, cloud-based deployments are expected to dominate the market in the coming years.
North America currently leads the AI in mental health market, driven by the region's strong adoption of healthcare technologies and significant investments in AI research and development. The United States, in particular, is at the forefront of integrating AI into healthcare services, including mental health, thanks to the presence of major AI companies, government funding, and favorable regulations. Furthermore, the region's large healthcare infrastructure, along with an increasing focus on addressing mental health issues, supports the demand for AI-powered solutions. North America's growing telemedicine sector and increasing awareness of mental health issues are expected to further boost the adoption of AI technologies in mental health, making it the largest market globally.
Leading players in the AI in mental health market include IBM, Microsoft, Google, Amazon Web Services, and Verint Systems, along with specialized companies like Woebot Health, Ada Health, and Mindstrong Health. These companies are investing heavily in AI research and development to enhance their mental health offerings and expand their market share. Partnerships between AI companies and healthcare providers are becoming increasingly common, with many firms focusing on creating integrated AI solutions that combine software, services, and cloud-based platforms. As the market continues to grow, competition will intensify, with companies focusing on technological advancements, regulatory compliance, and the expansion of their services to cater to the evolving mental health landscape. The development of more robust AI solutions, alongside increasing investment from both public and private sectors, will continue to shape the competitive dynamics of the market.
Report Features |
Description |
Market Size (2023) |
USD 1.1 Billion |
Forecasted Value (2030) |
USD 10.0 Billion |
CAGR (2024 – 2030) |
36.9% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Mental Health Market By Technology (Machine Learning, NLP, Computer Vision, Speech Recognition), By Component (Solutions, Services, Managed Services, Professional Services), By Application (Screening & Diagnosis, Therapy Assistance, Patient Monitoring, Behavior & Mood Tracking, Risk Assessment & Predictive Analytics), By End User (Hospitals & Clinics, Research & Academic Institutes, Mental Health Centers, Individual Users), and By Deployment Mode (Cloud-Based, On-Premises) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Ada Health,Bark Technologies,BetterHelp,Big Health,Ginger,Happify Health,Lyra Health,Meru Health,Mindstrong Health,Pear Therapeutics,Quartet Health,Spring Health,Talkspace,Woebot Health,Wysa |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI In Mental Health Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning (ML) |
4.2. Natural Language Processing (NLP) |
4.3. Computer Vision |
4.4. Speech Recognition |
4.5. Others |
5. AI In Mental Health Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Solutions |
5.2. Services |
5.3. Managed Services |
5.4. Professional Services |
6. AI In Mental Health Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Screening & Diagnosis |
6.2. Therapy Assistance |
6.3. Patient Monitoring |
6.4. Behavior & Mood Tracking |
6.5. Risk Assessment & Predictive Analytics |
6.6. Others |
7. AI In Mental Health Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Hospitals & Clinics |
7.2. Research & Academic Institutes |
7.3. Mental Health Centers |
7.4. Individual Users |
7.5. Others |
8. AI In Mental Health Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Cloud-Based |
8.2. On-Premises |
9. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
9.1. Regional Overview |
9.2. North America |
9.2.1. Regional Trends & Growth Drivers |
9.2.2. Barriers & Challenges |
9.2.3. Opportunities |
9.2.4. Factor Impact Analysis |
9.2.5. Technology Trends |
9.2.6. North America AI In Mental Health Market, by Technology |
9.2.7. North America AI In Mental Health Market, by Component |
9.2.8. North America AI In Mental Health Market, by Application |
9.2.9. North America AI In Mental Health Market, by End User |
9.2.10. North America AI In Mental Health Market, by Deployment Mode |
9.2.11. By Country |
9.2.11.1. US |
9.2.11.1.1. US AI In Mental Health Market, by Technology |
9.2.11.1.2. US AI In Mental Health Market, by Component |
9.2.11.1.3. US AI In Mental Health Market, by Application |
9.2.11.1.4. US AI In Mental Health Market, by End User |
9.2.11.1.5. US AI In Mental Health Market, by Deployment Mode |
9.2.11.2. Canada |
9.2.11.3. Mexico |
*Similar segmentation will be provided for each region and country |
9.3. Europe |
9.4. Asia-Pacific |
9.5. Latin America |
9.6. Middle East & Africa |
10. Competitive Landscape |
10.1. Overview of the Key Players |
10.2. Competitive Ecosystem |
10.2.1. Level of Fragmentation |
10.2.2. Market Consolidation |
10.2.3. Product Innovation |
10.3. Company Share Analysis |
10.4. Company Benchmarking Matrix |
10.4.1. Strategic Overview |
10.4.2. Product Innovations |
10.5. Start-up Ecosystem |
10.6. Strategic Competitive Insights/ Customer Imperatives |
10.7. ESG Matrix/ Sustainability Matrix |
10.8. Manufacturing Network |
10.8.1. Locations |
10.8.2. Supply Chain and Logistics |
10.8.3. Product Flexibility/Customization |
10.8.4. Digital Transformation and Connectivity |
10.8.5. Environmental and Regulatory Compliance |
10.9. Technology Readiness Level Matrix |
10.10. Technology Maturity Curve |
10.11. Buying Criteria |
11. Company Profiles |
11.1. Ada Health |
11.1.1. Company Overview |
11.1.2. Company Financials |
11.1.3. Product/Service Portfolio |
11.1.4. Recent Developments |
11.1.5. IMR Analysis |
*Similar information will be provided for other companies |
11.2. Bark Technologies |
11.3. BetterHelp |
11.4. Big Health |
11.5. Ginger |
11.6. Happify Health |
11.7. Lyra Health |
11.8. Meru Health |
11.9. Mindstrong Health |
11.10. Pear Therapeutics |
11.11. Quartet Health |
11.12. Spring Health |
11.13. Talkspace |
11.14. Woebot Health |
11.15. Wysa |
12. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI In Mental Health Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI In Mental Health Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI In Mental Health ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI In Mental Health Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.