sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Medical Imaging Market was valued at USD 2.7 billion in 2023 and will surpass USD 8.5 billion by 2030; growing at a CAGR of 17.8% during 2024 - 2030.
The AI in medical imaging market is experiencing substantial growth, driven by advancements in artificial intelligence technologies that enhance the efficiency, accuracy, and capabilities of medical imaging systems. AI applications in medical imaging utilize deep learning, machine learning, and computer vision to analyze complex medical images, assisting healthcare professionals in diagnosing a wide range of conditions. The market is characterized by the increasing demand for more accurate, faster, and non-invasive diagnostic methods that can improve patient outcomes. AI technologies are playing a significant role in automating the analysis of medical images such as X-rays, CT scans, MRIs, and ultrasounds, reducing the reliance on manual interpretations and minimizing human error.
The integration of AI into medical imaging systems offers numerous benefits, including improved diagnostic accuracy, early detection of diseases, and personalized treatment options. Additionally, the increasing prevalence of chronic diseases, growing demand for advanced imaging techniques, and rising healthcare costs are contributing to the expansion of the AI in medical imaging market. AI-powered solutions can analyze large volumes of medical data more quickly and efficiently than traditional methods, enhancing workflow efficiency for healthcare professionals. As the technology continues to evolve, the market is expected to witness even more sophisticated AI applications in the field of medical imaging, further boosting its growth.
Deep learning is the dominant technology within the AI in medical imaging market, owing to its ability to process vast amounts of data and learn from complex patterns in medical images. Deep learning models, particularly convolutional neural networks (CNNs), have revolutionized the field of medical imaging by enabling highly accurate image analysis and interpretation. These models are capable of detecting subtle abnormalities in medical images that may be missed by human radiologists, improving early diagnosis and treatment planning.
Deep learning algorithms are trained on large datasets of labeled medical images, allowing them to continuously improve their diagnostic accuracy. These models are used to analyze various types of medical images, including radiology, cardiology, neurology, and oncology scans. The ability of deep learning to autonomously segment, classify, and detect anomalies in medical images makes it a powerful tool for healthcare providers. As a result, deep learning continues to drive the adoption of AI in medical imaging, making it the most influential technology in this market segment.
Oncology is the fastest-growing application segment in the AI in medical imaging market, largely due to the rising incidence of cancer globally and the critical need for early detection. AI technologies in medical imaging are being increasingly applied to oncology for the analysis of various imaging modalities, such as CT scans, MRIs, and PET scans, to detect tumors and monitor their growth. The ability to identify and classify cancerous lesions at an early stage has the potential to significantly improve treatment outcomes and survival rates.
AI-driven imaging solutions can enhance the accuracy of cancer detection by identifying minute details in medical images that are difficult to detect by human radiologists. Additionally, AI systems can analyze longitudinal data to track changes in tumors over time, helping doctors make more informed decisions regarding treatment plans. With the growing emphasis on precision medicine and personalized treatment, AI’s role in oncology is set to expand, making it the fastest-growing application in the AI in medical imaging market.
Hospitals and diagnostic centers represent the largest end users of AI in medical imaging solutions due to the high volume of imaging procedures performed in these settings. Hospitals, which often serve as the primary healthcare provider for many patients, require advanced imaging systems to diagnose a wide range of medical conditions. With the increasing reliance on imaging for early detection, diagnosis, and treatment planning, AI technologies are being integrated into hospital and diagnostic center workflows to enhance the accuracy and speed of image analysis.
AI-powered medical imaging solutions help healthcare professionals manage large volumes of medical images more efficiently, ensuring timely diagnoses and reducing the workload of radiologists. Additionally, AI systems can assist in prioritizing cases based on the severity of abnormalities detected in images, improving workflow and patient care. Given the growing demand for medical imaging services in hospitals and diagnostic centers, these institutions are leading the adoption of AI-driven imaging technologies, making them the largest end users in the market.
North America is the largest region in the AI in medical imaging market, driven by the advanced healthcare infrastructure, high technology adoption, and significant investments in AI research and development. The United States, in particular, is a major contributor to the market's growth due to its well-established healthcare system, high number of diagnostic imaging procedures, and a strong presence of leading healthcare technology companies. Hospitals, imaging centers, and research institutions in North America are increasingly adopting AI-powered medical imaging solutions to improve diagnostic accuracy and reduce healthcare costs.
The U.S. also benefits from a favorable regulatory environment, with agencies such as the Food and Drug Administration (FDA) providing clear guidelines for the approval and integration of AI technologies in medical devices, including imaging systems. The presence of major players in the AI healthcare sector, such as GE Healthcare, Siemens Healthineers, and IBM Watson Health, further accelerates the growth of the AI in medical imaging market in North America. As healthcare providers in the region continue to invest in AI-driven solutions to enhance patient care and optimize operations, North America is expected to maintain its dominance in the market.
The AI in medical imaging market is highly competitive, with several key players driving innovation and technological advancements. Leading companies include GE Healthcare, Siemens Healthineers, Philips Healthcare, IBM Watson Health, and Canon Medical Systems. These companies are at the forefront of developing AI-powered medical imaging solutions that integrate deep learning, machine learning, and computer vision to enhance diagnostic capabilities.
The competitive landscape is characterized by significant investments in research and development, strategic partnerships, and mergers and acquisitions. Many companies are collaborating with healthcare providers and research institutions to enhance the accuracy and applicability of AI solutions across different medical specialties. As the market evolves, competition is expected to intensify, with companies focusing on expanding their product portfolios, improving AI algorithms, and ensuring seamless integration with existing healthcare systems. With ongoing advancements in AI technology, the companies in the medical imaging market are set to continue revolutionizing the way medical images are analyzed and interpreted, ultimately improving patient care and clinical outcomes.
Report Features |
Description |
Market Size (2023) |
USD 2.7 billion |
Forecasted Value (2030) |
USD 8.5 billion |
CAGR (2024 – 2030) |
17.8% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Medical Imaging Market By Technology (Deep Learning, Machine Learning, Computer Vision, Natural Language Processing (NLP)), By Application (Radiology, Cardiology, Neurology, Oncology, Orthopedics), By End User (Hospitals and Diagnostic Centers, Research and Academic Institutes, Imaging Centers, Clinics) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Siemens Healthineers, GE Healthcare, Philips Healthcare, IBM Corporation, Canon Medical Systems Corporation, Medtronic Plc, NVIDIA Corporation, Butterfly Network, Inc., Aidoc Medical, Zebra Medical Vision |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Medical Imaging Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Deep Learning |
4.2. Machine Learning |
4.3. Computer Vision |
4.4. Natural Language Processing (NLP) |
5. AI in Medical Imaging Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Radiology |
5.2. Cardiology |
5.3. Neurology |
5.4. Oncology |
5.5. Orthopedics |
6. AI in Medical Imaging Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Hospitals and Diagnostic Centers |
6.2. Research and Academic Institutes |
6.3. Imaging Centers |
6.4. Clinics |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Medical Imaging Market, by Technology |
7.2.7. North America AI in Medical Imaging Market, by Application |
7.2.8. North America AI in Medical Imaging Market, by End User |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Medical Imaging Market, by Technology |
7.2.9.1.2. US AI in Medical Imaging Market, by Application |
7.2.9.1.3. US AI in Medical Imaging Market, by End User |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Siemens Healthineers |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. GE Healthcare |
9.3. Philips Healthcare |
9.4. IBM Corporation |
9.5. Canon Medical Systems Corporation |
9.6. Medtronic Plc |
9.7. NVIDIA Corporation |
9.8. Butterfly Network, Inc. |
9.9. Aidoc Medical |
9.10. Zebra Medical Vision |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Medical Imaging Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Medical Imaging Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Medical Imaging ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Medical Imaging Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.