sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Marketing Market was valued at USD 11.7 billion in 2023 and will surpass USD 31.8 billion by 2030; growing at a CAGR of 15.3% during 2024 - 2030.
The AI in Marketing market is transforming the way businesses connect with their audiences, making marketing strategies smarter, more efficient, and highly personalized. By leveraging technologies such as machine learning, natural language processing (NLP), and computer vision, organizations are enhancing their ability to understand consumer behavior, optimize campaigns, and deliver tailored experiences. This integration of AI into marketing not only reduces operational inefficiencies but also improves ROI by enabling data-driven decisions.
The increasing adoption of AI in marketing is fueled by the surge in digital advertising, e-commerce, and omnichannel retailing. Companies across various industries are turning to AI to analyze large datasets, predict customer needs, and automate repetitive tasks. As a result, AI technologies have become critical tools for creating impactful marketing campaigns, improving customer engagement, and staying competitive in an ever-evolving marketplace.
Machine learning has emerged as the largest AI technology segment in the marketing sector, driven by its ability to process vast amounts of data and uncover actionable insights. In campaign optimization, machine learning algorithms are used to analyze consumer data, segment audiences, and predict the effectiveness of different marketing strategies. This enables marketers to allocate resources more effectively, ensuring higher conversion rates and better campaign outcomes.
Machine learning also helps marketers dynamically adjust campaigns in real-time based on performance metrics. For instance, algorithms can identify underperforming ad creatives and suggest replacements or modifications, ensuring campaigns remain relevant and impactful. With its ability to enhance decision-making and improve campaign ROI, machine learning is revolutionizing marketing strategies across industries.
The fastest growing application of AI in marketing is personalization and targeting, fueled by the rising demand for more customized consumer experiences. AI technologies enable companies to analyze individual customer preferences, purchasing history, and behavior to deliver tailored content and product recommendations. This approach not only enhances customer satisfaction but also increases sales and brand loyalty.
For example, AI-driven personalization tools can provide real-time product recommendations on e-commerce platforms, curate personalized email campaigns, or display targeted advertisements based on browsing history. These capabilities allow businesses to engage with customers more effectively, making personalization and targeting a cornerstone of modern marketing strategies. As consumers increasingly expect brands to anticipate their needs, the demand for AI-powered personalization solutions is set to grow exponentially.
The retail industry is the largest end-user of AI in marketing, owing to its need for advanced tools to engage customers and optimize sales. Retailers leverage AI technologies for personalized recommendations, customer segmentation, and dynamic pricing strategies. By analyzing consumer data, retailers can predict shopping trends, tailor marketing campaigns, and enhance the in-store and online shopping experience.
AI is also transforming inventory management and supply chain optimization in the retail sector, allowing companies to anticipate demand and reduce waste. For example, AI-driven chatbots are widely used to assist customers, answer queries, and improve overall satisfaction. With the increasing shift toward e-commerce and omnichannel retailing, the adoption of AI in marketing is expected to grow significantly in the retail industry.
North America is the largest region in the AI in Marketing market, driven by its advanced digital infrastructure and early adoption of AI technologies. The region is home to many leading AI companies and marketing technology providers, which has accelerated the integration of AI into marketing processes. Businesses in North America are increasingly adopting AI to enhance customer experiences, optimize campaigns, and stay competitive in a rapidly evolving digital landscape.
The U.S., in particular, leads the regional market due to its robust technology ecosystem, significant investments in AI research, and the presence of major players such as Google, IBM, and Salesforce. These companies provide cutting-edge AI tools for marketing automation, data analysis, and customer engagement. The region’s focus on innovation and consumer-centric marketing ensures its continued dominance in the AI in Marketing market.
The AI in Marketing market is highly competitive, with both established technology companies and innovative startups driving its growth. Leading players such as Google, IBM, Adobe, and Salesforce are at the forefront, offering comprehensive AI-powered marketing platforms that enable personalization, campaign automation, and advanced analytics. These companies benefit from extensive customer bases and strong R&D capabilities.
In addition to the major players, smaller firms and startups are gaining traction by focusing on niche applications such as AI-driven content creation and sentiment analysis. Companies like Phrasee and Persado specialize in AI-generated marketing copy, while others like Conversica focus on AI-powered customer engagement. The competitive landscape is further shaped by collaborations, mergers, and acquisitions as companies strive to expand their capabilities. This dynamic environment fosters innovation, ensuring that the AI in Marketing market continues to evolve rapidly.
Report Features |
Description |
Market Size (2023) |
USD 11.7 billion |
Forecasted Value (2030) |
USD 31.8 billion |
CAGR (2024 – 2030) |
15.3% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Marketing Market By AI Technology (Machine Learning, Natural Language Processing (NLP), Computer Vision Software), By Application (Personalization and Targeting, Content Creation and Optimization, Customer Service and Engagement, Campaign Optimization), By End User Industry (BFSI, Retail, E-commerce, Healthcare, Automotive, Media & Entertainment) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Salesforce, IBM Corporation, Adobe Inc., Google (Alphabet Inc.), Microsoft Corporation, Oracle Corporation, HubSpot, Inc., Criteo S.A., SAP SE, Amazon Web Services (AWS), Marketo (Adobe), SAS Institute Inc., Semrush Inc., Zoho Corporation, C3.ai |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Marketing Market, by AI Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Computer Vision Software |
5. AI in Marketing Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Personalization and Targeting |
5.1.1. Dynamic Pricing |
5.1.2. Product Recommendations |
5.2. Content Creation and Optimization |
5.2.1. AI-Powered Copywriting |
5.2.2. Content Curation |
5.3. Customer Service and Engagement |
5.3.1. Chatbots |
5.3.2. Virtual Assistants |
5.4. Campaign Optimization |
5.4.1. Ad Targeting and Placement |
5.4.2. Customer Journey Mapping |
6. AI in Marketing Market, by End User Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. BFSI |
6.2. Retail |
6.3. E-commerce |
6.4. Healthcare |
6.5. Automotive |
6.6. Media & Entertainment |
6.7. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Marketing Market, by AI Technology |
7.2.7. North America AI in Marketing Market, by Application |
7.2.8. North America AI in Marketing Market, by End User Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Marketing Market, by AI Technology |
7.2.9.1.2. US AI in Marketing Market, by Application |
7.2.9.1.3. US AI in Marketing Market, by End User Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Salesforce |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. IBM Corporation |
9.3. Adobe Inc. |
9.4. Google (Alphabet Inc.) |
9.5. Microsoft Corporation |
9.6. Oracle Corporation |
9.7. HubSpot, Inc. |
9.8. Criteo S.A. |
9.9. SAP SE |
9.10. Amazon Web Services (AWS) |
9.11. Marketo (Adobe) |
9.12. SAS Institute Inc. |
9.13. Semrush Inc. |
9.14. Zoho Corporation |
9.15. C3.ai |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Marketing Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Marketing Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Marketing ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Marketing Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.