sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in HR Market was valued at USD 2.7 billion in 2023 and will surpass USD 6.6 billion by 2030; growing at a CAGR of 13.4% during 2024 - 2030.
The AI in HR market is rapidly reshaping how human resources (HR) functions across industries by streamlining recruitment processes, enhancing employee engagement, and optimizing overall workforce management. With the increasing need for organizations to stay competitive in the digital era, HR departments are adopting AI technologies to make data-driven decisions, automate repetitive tasks, and improve the overall employee experience. AI technologies such as machine learning, natural language processing (NLP), and computer vision are being integrated into HR tools to enhance various aspects of human resource management, including recruitment, employee development, and performance evaluations.
The adoption of AI in HR is particularly beneficial for improving efficiency, as it helps HR professionals analyze large datasets, identify trends, and make more informed decisions. AI-driven automation in recruitment, for example, allows companies to reduce the time spent on candidate screening, while also providing more personalized learning and development opportunities for employees. As AI continues to evolve, it is expected to revolutionize HR practices by enabling companies to better match talent to roles, improve retention rates, and foster more dynamic work environments.
Machine learning technology is the largest and most impactful AI technology in the HR sector, owing to its ability to analyze large datasets and make predictions based on patterns within that data. In HR applications, machine learning is being widely used in recruitment and onboarding processes, where algorithms are employed to filter resumes, assess candidate suitability, and match candidates to positions more efficiently. Machine learning models learn from past hiring decisions and continuously improve over time, allowing HR teams to make more accurate hiring decisions.
In addition to recruitment, machine learning is also helping organizations predict employee behavior and performance. For example, machine learning algorithms can analyze past performance data to predict future success and identify areas for employee development. By automating these processes, companies can save time, reduce bias, and ensure a more data-driven approach to HR decisions. The widespread use of machine learning in HR is expected to continue growing as organizations recognize its ability to improve decision-making and enhance overall workforce management.
Recruitment and onboarding is the fastest growing application of AI in HR, largely driven by the increasing need for efficient and scalable hiring processes. AI-powered recruitment tools can automatically screen resumes, conduct initial candidate assessments, and even engage in initial conversations with candidates through chatbots. These technologies help HR teams identify the most suitable candidates for open positions faster and with greater accuracy. AI also helps minimize human bias during the hiring process, ensuring that all candidates are evaluated based on their qualifications rather than subjective factors.
Moreover, AI in onboarding streamlines the process of integrating new hires into the company, reducing the administrative burden on HR teams and improving the employee experience. AI-driven onboarding platforms can guide new employees through necessary paperwork, training, and company policies, allowing them to become productive more quickly. This acceleration in the recruitment and onboarding process not only improves operational efficiency but also leads to higher employee satisfaction and retention rates, which is crucial for maintaining a competitive workforce.
The IT & Technology sector is the largest end-user industry for AI in HR applications, driven by the industry's constant demand for innovation and optimization. Technology companies are early adopters of AI, particularly in HR functions such as recruitment, employee engagement, and performance management. AI is used to streamline the hiring process, enhance learning and development initiatives, and personalize employee experiences, all of which are vital to maintaining a competitive edge in the fast-paced tech industry.
In the IT & Technology sector, AI-powered HR tools help companies sift through vast amounts of data to identify top talent, track employee performance, and foster continuous learning. Additionally, AI is increasingly being used to manage employee engagement, by providing personalized recommendations for career development, training, and job satisfaction. The adoption of AI in HR is particularly beneficial for IT companies, which often require highly specialized talent and are focused on enhancing employee experience to retain top performers.
North America is the largest region in the AI in HR market, primarily due to the region's technological advancement and widespread adoption of AI solutions across industries. The United States, in particular, is home to many leading HR technology companies that provide AI-driven recruitment tools, employee engagement platforms, and learning management systems. With an established ecosystem of technology providers, educational institutions, and a talent pool eager to adopt innovative solutions, North America remains a key driver of AI adoption in the HR sector.
The demand for AI-powered HR solutions is also fueled by the growing focus on improving diversity and inclusion, reducing biases in hiring, and optimizing talent management processes. North American companies are increasingly leveraging AI to enhance these initiatives and stay competitive in the global talent market. As businesses continue to prioritize data-driven decision-making and operational efficiency, the North American region is expected to maintain its leadership in the AI in HR market.
The AI in HR market is highly competitive, with a wide range of players offering AI-powered solutions designed to optimize recruitment, employee engagement, and workforce management. Leading companies such as IBM, Oracle, SAP, and Workday provide comprehensive AI-based HR platforms that incorporate machine learning, natural language processing, and automation to streamline HR processes. These large technology companies leverage their established customer bases and strong research and development capabilities to expand their presence in the HR market.
In addition to the established players, a number of startups and niche companies are also gaining traction by offering specialized AI solutions for specific HR functions. Companies like HireVue and Pymetrics are leading the way in AI-powered recruitment and candidate assessment, while platforms like Gloat and Eightfold AI focus on talent management and employee development. The competitive landscape is marked by frequent partnerships and acquisitions, as companies strive to integrate AI into a wider range of HR applications. As the market continues to expand, innovation and collaboration will be key to maintaining a competitive edge in the AI in HR market.
Report Features |
Description |
Market Size (2023) |
USD 2.7 billion |
Forecasted Value (2030) |
USD 6.6 billion |
CAGR (2024 – 2030) |
13.4% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in HR Market By AI Technology (Machine Learning, Natural Language Processing (NLP), Computer Vision Software), By Application (Recruitment and Onboarding, Employee Engagement, Learning and Development, Performance Management), By End User Industry (BFSI, Healthcare, IT & Technology, Retail, Manufacturing) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, SAP SE, Oracle Corporation, ADP, LLC, Workday, Inc., Ultimate Software, HireVue, Cornerstone OnDemand, Xerox Corporation, PeopleFluent, LinkedIn (Microsoft Corporation), SmartRecruiters, Jobvite, Textio, Pymetrics |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in HR Market, by AI Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Computer Vision Software |
5. AI in HR Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Recruitment and Onboarding |
5.1.1. Candidate Screening |
5.1.2. Talent Sourcing |
5.2. Employee Engagement |
5.2.1. Employee Sentiment Analysis |
5.2.2. Feedback and Recognition Systems |
5.3. Learning and Development |
5.3.1. Personalized Learning Paths |
5.3.2. Skill Gap Analysis |
5.4. Performance Management |
5.4.1. Goal Setting and Tracking |
5.4.2. Performance Reviews |
6. AI in HR Market, by End User Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. BFSI |
6.2. Healthcare |
6.3. IT & Technology |
6.4. Retail |
6.5. Manufacturing |
6.6. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in HR Market, by AI Technology |
7.2.7. North America AI in HR Market, by Application |
7.2.8. North America AI in HR Market, by End User Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in HR Market, by AI Technology |
7.2.9.1.2. US AI in HR Market, by Application |
7.2.9.1.3. US AI in HR Market, by End User Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. IBM Corporation |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. SAP SE |
9.3. Oracle Corporation |
9.4. ADP, LLC |
9.5. Workday, Inc. |
9.6. Ultimate Software |
9.7. HireVue |
9.8. Cornerstone OnDemand |
9.9. Xerox Corporation |
9.10. PeopleFluent |
9.11. LinkedIn (Microsoft Corporation) |
9.12. SmartRecruiters |
9.13. Jobvite |
9.14. Textio |
9.15. Pymetrics |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in HR Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in HR Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in HR ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in HR Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
Data Triangulation
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.