sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Genomics Market was valued at USD 3.2 billion in 2023 and will surpass USD 13.0 billion by 2030; growing at a CAGR of 22.0% during 2024 - 2030.
The AI in genomics market is evolving rapidly, driven by the integration of artificial intelligence technologies in genomic research and biotechnology. AI tools such as machine learning, deep learning, and natural language processing are transforming genomics by enhancing the analysis of vast genomic datasets, enabling researchers to uncover insights at an unprecedented scale and speed. From drug discovery and genomic sequencing to genetic research and personalized medicine, AI technologies are facilitating breakthroughs that were once unimaginable. The market for AI in genomics is set to grow significantly as AI accelerates the pace of genomic research and helps unlock the potential of personalized medicine, targeted therapies, and advanced diagnostics.
As the AI in genomics market continues to expand, several key subsegments within the technology, application, and end-use industry categories are emerging as key drivers of this growth. Understanding these subsegments and their dynamics will be crucial for stakeholders looking to capitalize on the opportunities in this transformative field. Below, we explore the largest and fastest-growing subsegments within each category.
Machine learning (ML) is the largest technology subsegment in the AI in genomics market due to its versatility and effectiveness in genomic data analysis. ML algorithms can process vast amounts of genomic data, identify patterns, and predict outcomes, making them invaluable in various applications such as genomic sequencing, drug discovery, and personalized medicine. By learning from historical datasets, ML models improve the accuracy of predictions and accelerate the identification of genetic markers associated with diseases, enabling more targeted and effective treatments.
ML’s ability to handle complex, high-dimensional data makes it the dominant technology in genomics. It is particularly well-suited for tasks such as gene expression analysis, mutation detection, and variant interpretation. As the volume of genomic data continues to increase with advances in sequencing technologies, the role of ML in analyzing and interpreting this data will only grow, cementing its position as the largest technology subsegment in the AI in genomics market.
In the application category, drug discovery is the largest subsegment, largely due to the significant impact AI has on the development of precision medicine. AI technologies, including machine learning and deep learning, are transforming drug discovery by identifying new drug candidates, predicting molecular behavior, and optimizing clinical trial designs. By leveraging genomic data, AI models can simulate the effects of various compounds on specific genetic profiles, enabling the development of targeted therapies that are more effective and have fewer side effects.
The use of AI in drug discovery also accelerates the development timeline, reduces costs, and improves the chances of clinical success. With the growing emphasis on personalized medicine—treatments tailored to an individual's genetic makeup—AI’s ability to integrate genomic data with clinical information has made it an indispensable tool in the drug discovery process. This has positioned drug discovery as the largest and most critical application in the AI in genomics market.
Pharmaceutical and biotechnology companies represent the largest end-use industry in the AI in genomics market. These companies are leading the adoption of AI technologies to enhance their R&D capabilities, particularly in drug discovery, genetic research, and personalized medicine. Pharmaceutical and biotech firms are leveraging AI to analyze genomic data, identify genetic biomarkers, and develop therapies that are more targeted and effective. AI is also playing a key role in optimizing clinical trials, from patient recruitment to monitoring treatment responses.
The growing demand for personalized medicine and the ability to offer more tailored therapies is driving the adoption of AI in these industries. As pharmaceutical and biotechnology companies strive to accelerate their drug discovery processes and improve the success rates of clinical trials, AI technologies are helping them stay ahead of the competition. This makes pharmaceutical and biotech companies the largest user group of AI in genomics, with their ongoing investment in AI driving the market's growth.
North America is the largest region in the AI in genomics market, primarily driven by the high levels of investment in genomics research and biotechnology innovations. The United States, in particular, is a leader in AI integration within genomics, with major biotech hubs like Silicon Valley and Boston at the forefront of this trend. The presence of top-tier universities, research institutions, and leading pharmaceutical companies in North America has fostered a strong ecosystem for AI-driven genomic research and applications.
In addition, government funding and initiatives such as the Precision Medicine Initiative and the National Institutes of Health (NIH) investments in AI research have further propelled the region's dominance. North America is expected to remain the largest region in the AI in genomics market due to its established infrastructure, high research spending, and a robust regulatory environment that supports technological advancements in the field.
The competitive landscape of the AI in genomics market features a mix of well-established pharmaceutical giants and cutting-edge AI-focused biotech companies. Leading companies such as IBM Watson Health, Illumina, Thermo Fisher Scientific, and Google Health are at the forefront of integrating AI into genomic research. IBM, for instance, has been instrumental in applying AI to drug discovery and genomic data analysis, while Illumina has leveraged AI in next-generation sequencing technologies. Google Health, through its DeepMind division, is also making significant strides in applying AI to protein folding and genetic research.
Report Features |
Description |
Market Size (2023) |
USD 3.2 Billion |
Forecasted Value (2030) |
USD 13.0 Billion |
CAGR (2024 – 2030) |
22.0% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Genomics Market By Technology (Machine Learning, Deep Learning, Natural Language Processing), By Application (Drug Discovery, Genomic Sequencing, Genetic Research & Personalized Medicine, Biomarker Discovery), By End-Use Industry (Healthcare Providers, Pharmaceutical & Biotech Companies, Contract Research Organizations) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Agilent Technologies, BenevolentAI, Bristol-Myers Squibb, Deep Genomics, Freenome, Genpact, IBM Watson Health, Illumina, Insilico Medicine, Qiagen, Tempus, Thermo Fisher Scientific, XtalPi |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Genomics Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Deep Learning |
4.3. Natural Language Processing (NLP) |
4.4. Others |
5. AI in Genomics Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Drug Discovery |
5.2. Genomic Sequencing |
5.3. Genetic Research & Personalized Medicine |
5.4. Biomarker Discovery |
5.5. Others |
6. AI in Genomics Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Healthcare Providers |
6.2. Pharmaceutical & Biotech Companies |
6.3. Contract Research Organizations (CROs) |
6.4. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Genomics Market, by Technology |
7.2.7. North America AI in Genomics Market, by Application |
7.2.8. North America AI in Genomics Market, by End-Use Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Genomics Market, by Technology |
7.2.9.1.2. US AI in Genomics Market, by Application |
7.2.9.1.3. US AI in Genomics Market, by End-Use Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Agilent Technologies |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. BenevolentAI |
9.3. Bristol-Myers Squibb |
9.4. Deep Genomics |
9.5. Freenome |
9.6. Genpact |
9.7. Grail |
9.8. IBM Watson Health |
9.9. Illumina |
9.10. Insilico Medicine |
9.11. Qiagen |
9.12. Tempus |
9.13. Thermo Fisher Scientific |
9.14. Veracyte |
9.15. XtalPi |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Genomics Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Genomics Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Genomics ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Genomics Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.