Artificial Intelligence (AI) in Epidemiology Market By Deployment Type (On-Premise, Cloud-Based), By Application (Infection Prediction and Forecasting, Disease and Syndromic Surveillance, Monitoring Population Health and Incidence/Prevalence), By End-User Industry (Government and State Agencies, Research Labs, Healthcare Providers), and By Region; Global Insights & Forecast (2023 – 2030)

As per Intent Market Research, the Artificial Intelligence (AI) in Epidemiology Market was valued at USD 0.4 Billion in 2024-e and will surpass USD 2.0 Billion by 2030; growing at a CAGR of 29.7% during 2025-2030.

The artificial intelligence (AI) in epidemiology market has emerged as a key player in revolutionizing disease prediction, surveillance, and management. AI technologies, including machine learning and predictive analytics, have enabled healthcare providers, government agencies, and research institutions to process large datasets to predict disease outbreaks, analyze epidemiological trends, and enhance decision-making in public health. As AI integrates into the healthcare and epidemiology sectors, the demand for innovative solutions is expected to grow significantly. This growth is driven by the increasing complexity of healthcare systems, the need for more accurate disease forecasting, and the rising pressure on governments and organizations to tackle global health threats efficiently.

Deployment Type Segment is Fastest Growing Owing to Cloud-Based Solutions

Among the various deployment types in the AI in epidemiology market, cloud-based solutions are the fastest growing due to their scalability, flexibility, and cost-efficiency. Cloud-based platforms provide easier access to large datasets, which are essential for epidemiological studies and disease surveillance. These platforms enable real-time data processing, remote access, and collaboration across different geographical locations, making them ideal for global health monitoring and analysis. The cost-effectiveness of cloud-based solutions allows healthcare organizations to avoid the high upfront costs associated with on-premise infrastructures. As a result, organizations are increasingly shifting toward cloud-based AI solutions to improve operational efficiency and to leverage the global reach and advanced analytical capabilities offered by the cloud.

Artificial Intelligence (AI) in Epidemiology Market Size

Application Segment is Largest Owing to Infection Prediction and Forecasting

In the application segment, infection prediction and forecasting holds the largest share, as it forms the cornerstone of epidemiological AI applications. Infection prediction is critical for preparing and managing healthcare resources and interventions, especially in light of recent global health crises such as the COVID-19 pandemic. AI models help forecast the spread of infectious diseases by analyzing data from various sources, such as hospital records, social media, and public health reports. These predictive models can significantly improve the accuracy of early warnings, enabling timely interventions and resource allocation. Governments and healthcare providers are heavily investing in AI technologies for infection prediction, making this application the dominant force within the market. The ability to predict and prevent the spread of diseases not only saves lives but also helps reduce healthcare costs by minimizing the need for emergency responses.

End-User Segment is Largest Owing to Government and State Agencies

In the end-user segment, government and state agencies are the largest adopters of AI in epidemiology. These agencies rely heavily on AI-driven tools to monitor public health trends, predict disease outbreaks, and track epidemiological data across entire populations. Governments globally are using AI to enhance their disease surveillance systems and to manage public health responses more effectively. The increasing availability of AI-based tools for monitoring and analyzing population health data has led to substantial investments in this segment, especially in developed countries. With government mandates to ensure public health and respond to emerging disease threats efficiently, agencies are at the forefront of implementing AI solutions to improve their epidemiological practices and preparedness for future health crises.

Region Segment is Largest Owing to North America's Advanced Healthcare Infrastructure

North America holds the largest share of the AI in epidemiology market, primarily driven by the region's advanced healthcare infrastructure, substantial investments in technology, and high adoption rates of AI solutions. The United States and Canada have made significant strides in integrating AI into public health and epidemiology systems. Government agencies, healthcare providers, and research institutions in North America are increasingly relying on AI to enhance disease surveillance, track epidemiological trends, and predict outbreaks. Moreover, the presence of key technology giants such as Microsoft, IBM, and Google, who are leading AI innovations, further fuels market growth in this region. North America’s regulatory environment and the availability of large-scale healthcare datasets position it as the dominant region for AI adoption in epidemiology, with continued growth expected over the coming years.

Artificial Intelligence (AI) in Epidemiology Market Size by Region 2030

Competitive Landscape and Leading Companies

The AI in epidemiology market is highly competitive, with leading companies constantly innovating and expanding their portfolios. Key players in the market include Cognizant Technology Solutions, Cerner Corporation, Epic Systems Corporation, Microsoft, and IBM, among others. These companies are focusing on strategic partnerships, technological advancements, and acquisitions to strengthen their market presence. For example, companies like Microsoft and IBM are integrating advanced AI algorithms into their healthcare platforms to enhance predictive analytics and disease surveillance capabilities. Furthermore, healthcare-specific AI solutions are gaining traction, particularly in regions like North America, where healthcare providers and government agencies are adopting these technologies at a fast pace. As the market continues to expand, these leading players are poised to maintain their competitive edge through continuous innovation and collaborations with healthcare institutions to meet the growing demand for AI-powered epidemiological solutions.

List of Leading Companies:

  • Cognizant Technology Solutions Corporation
  • Cerner Corporation (Oracle)
  • Epic Systems Corporation
  • eClinicalWorks LLC
  • Alphabet Inc.
  • Komodo Health
  • Microsoft Corporation
  • Meditech
  • Predixion Software
  • Siemens Healthineers AG
  • Intel Corporation
  • Bayer Healthcare
  • Artificial Intelligence for Medical Epidemiology (AIME)
  • Cardiolyse
  • SAS Institute, Inc.

Recent Developments:

  • Cognizant Technology Solutions Corporation: Expanded its AI-driven healthcare solutions to enhance disease prediction and management capabilities.
  • Cerner Corporation (Oracle): Integrated advanced AI algorithms into its electronic health record systems to improve epidemiological data analysis.
  • Microsoft Corporation: Launched a cloud-based AI platform aimed at supporting global epidemiological research and disease surveillance efforts.
  • Siemens Healthineers AG: Developed an AI-powered tool for real-time monitoring of infectious disease outbreaks, enhancing public health response strategies.
  • SAS Institute, Inc.: Introduced a new AI analytics suite designed to assist healthcare providers in predictive modeling and epidemiological studies.

Report Scope:

Report Features

Description

Market Size (2024-e)

USD 0.4 Billion

Forecasted Value (2030)

USD 2.0 Billion

CAGR (2025 – 2030)

29.7%

Base Year for Estimation

2024-e

Historic Year

2023

Forecast Period

2025 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

Artificial Intelligence (AI) in Epidemiology Market By Deployment Type (On-Premise, Cloud-Based), By Application (Infection Prediction and Forecasting, Disease and Syndromic Surveillance, Monitoring Population Health and Incidence/Prevalence), By End-User Industry (Government and State Agencies, Research Labs, Healthcare Providers)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

Cognizant Technology Solutions Corporation, Cerner Corporation (Oracle), Epic Systems Corporation, eClinicalWorks LLC, Alphabet Inc., Komodo Health, Microsoft Corporation, Meditech, Predixion Software, Siemens Healthineers AG, Intel Corporation, Bayer Healthcare, Artificial Intelligence for Medical Epidemiology (AIME), Cardiolyse, SAS Institute, Inc.

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

Frequently Asked Questions

The Artificial Intelligence (AI) in Epidemiology Market was valued at USD 0.4 Billion in 2024-e and is expected to grow at a CAGR of over 29.7% from 2025 to 2030

AI systems can process real-time data from various sources, enabling early detection of outbreaks and facilitating timely interventions.

AI accelerates data analysis, improves predictive modeling, and supports evidence-based decision-making in public health.

Healthcare providers, government agencies, research institutions, and pharmaceutical companies are integrating AI to enhance epidemiological practices.

Challenges include data privacy concerns, the need for high-quality data, and the integration of AI systems into existing public health infrastructures.

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. Artificial Intelligence (AI) in Epidemiology Market, by Deployment Type (Market Size & Forecast: USD Million, 2023 – 2030)

   4.1. On-Premise

   4.2. Cloud-Based

5. Artificial Intelligence (AI) in Epidemiology Market, by Application (Market Size & Forecast: USD Million, 2023 – 2030)

   5.1. Infection Prediction and Forecasting

   5.2. Disease and Syndromic Surveillance

   5.3. Monitoring Population Health and Incidence/Prevalence

6. Artificial Intelligence (AI) in Epidemiology Market, by End-User (Market Size & Forecast: USD Million, 2023 – 2030)

   6.1. Government and State Agencies

   6.2. Research Labs

   6.3. Healthcare Providers

7. Regional Analysis (Market Size & Forecast: USD Million, 2023 – 2030)

   7.1. Regional Overview

   7.2. North America

      7.2.1. Regional Trends & Growth Drivers

      7.2.2. Barriers & Challenges

      7.2.3. Opportunities

      7.2.4. Factor Impact Analysis

      7.2.5. Technology Trends

      7.2.6. North America Artificial Intelligence (AI) in Epidemiology Market, by Deployment Type

      7.2.7. North America Artificial Intelligence (AI) in Epidemiology Market, by Application

      7.2.8. North America Artificial Intelligence (AI) in Epidemiology Market, by End-User

      7.2.9. By Country

         7.2.9.1. US

               7.2.9.1.1. US Artificial Intelligence (AI) in Epidemiology Market, by Deployment Type

               7.2.9.1.2. US Artificial Intelligence (AI) in Epidemiology Market, by Application

               7.2.9.1.3. US Artificial Intelligence (AI) in Epidemiology Market, by End-User

         7.2.9.2. Canada

         7.2.9.3. Mexico

    *Similar segmentation will be provided for each region and country

   7.3. Europe

   7.4. Asia-Pacific

   7.5. Latin America

   7.6. Middle East & Africa

8. Competitive Landscape

   8.1. Overview of the Key Players

   8.2. Competitive Ecosystem

      8.2.1. Level of Fragmentation

      8.2.2. Market Consolidation

      8.2.3. Product Innovation

   8.3. Company Share Analysis

   8.4. Company Benchmarking Matrix

      8.4.1. Strategic Overview

      8.4.2. Product Innovations

   8.5. Start-up Ecosystem

   8.6. Strategic Competitive Insights/ Customer Imperatives

   8.7. ESG Matrix/ Sustainability Matrix

   8.8. Manufacturing Network

      8.8.1. Locations

      8.8.2. Supply Chain and Logistics

      8.8.3. Product Flexibility/Customization

      8.8.4. Digital Transformation and Connectivity

      8.8.5. Environmental and Regulatory Compliance

   8.9. Technology Readiness Level Matrix

   8.10. Technology Maturity Curve

   8.11. Buying Criteria

9. Company Profiles

   9.1. Cognizant Technology Solutions Corporation

      9.1.1. Company Overview

      9.1.2. Company Financials

      9.1.3. Product/Service Portfolio

      9.1.4. Recent Developments

      9.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   9.2. Cerner Corporation (Oracle)

   9.3. Epic Systems Corporation

   9.4. eClinicalWorks LLC

   9.5. Alphabet Inc.

   9.6. Komodo Health

   9.7. Microsoft Corporation

   9.8. Meditech

   9.9. Predixion Software

   9.10. Siemens Healthineers AG

   9.11. Intel Corporation

   9.12. Bayer Healthcare

   9.13. Artificial Intelligence for Medical Epidemiology (AIME)

   9.14. Cardiolyse

   9.15. SAS Institute, Inc.

10. Appendix

A comprehensive market research approach was employed to gather and analyze data on the Artificial Intelligence (AI) in Epidemiology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the Artificial Intelligence (AI) in Epidemiology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach -Artificial Intelligence (AI) in Epidemiology Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the Artificial Intelligence (AI) in Epidemiology Market ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the Artificial Intelligence (AI) in Epidemiology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down -Artificial Intelligence (AI) in Epidemiology Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

NA

Please state your requirements.

  • United States+1
  • United Kingdom+44
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Swaziland+268
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358

I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options

A PHP Error was encountered

Severity: Warning

Message: Undefined variable $isPopupShowCount

Filename: site/industry_reports.php

Line Number: 772

Backtrace:

File: /home/u994520440/domains/intentmarketresearch.com/public_html/application/views/site/industry_reports.php
Line: 772
Function: _error_handler

File: /home/u994520440/domains/intentmarketresearch.com/public_html/application/core/MY_Controller.php
Line: 65
Function: view

File: /home/u994520440/domains/intentmarketresearch.com/public_html/application/controllers/site/SiteReportController.php
Line: 97
Function: render

File: /home/u994520440/domains/intentmarketresearch.com/public_html/index.php
Line: 315
Function: require_once