sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Epidemiology Market was valued at USD 431.7 million in 2023 and will surpass USD 1,162.1 million by 2030; growing at a CAGR of 15.2% during 2024 - 2030.
The AI in epidemiology market is rapidly gaining traction as advanced technologies, such as machine learning, natural language processing, and predictive analytics, are being increasingly integrated into the field of public health. These technologies are transforming epidemiological practices by enabling more accurate disease surveillance, efficient outbreak detection, and improved risk assessments. With the ongoing challenges posed by infectious diseases, the application of AI is becoming critical in preventing and controlling epidemics, optimizing healthcare responses, and improving public health interventions. AI-powered tools can analyze vast datasets from health systems, social media, environmental factors, and more, providing real-time insights into the spread of diseases and the effectiveness of intervention strategies.
The growing need for faster, more accurate responses to global health threats, such as pandemics and endemic diseases, is driving AI adoption in the epidemiology space. AI algorithms are helping epidemiologists to predict disease trends, identify emerging health threats, and evaluate risk factors, ultimately enabling more informed decision-making in public health policy. AI’s role in epidemiology is expanding to support drug and vaccine development, improve outbreak management, and optimize healthcare resources. As the demand for advanced epidemiological solutions grows, the AI in epidemiology market is expected to expand significantly, bringing transformative advancements in disease prevention and healthcare planning.
Disease surveillance is the fastest-growing application within the AI in epidemiology market. AI-driven disease surveillance systems can analyze large amounts of data from a variety of sources, including hospital records, social media, environmental data, and health reports, to detect emerging disease outbreaks much faster than traditional methods. By identifying trends in the data, AI models can predict potential outbreaks, track the spread of infectious diseases, and provide valuable early warnings for public health authorities. These capabilities are particularly important in the management of contagious diseases such as influenza, COVID-19, and others, where timely detection and intervention can significantly reduce transmission and prevent large-scale epidemics.
AI-powered disease surveillance tools also enable more accurate and granular insights into disease patterns, helping health organizations to identify at-risk populations and vulnerable regions. This leads to more effective resource allocation, ensuring that medical interventions, vaccines, and treatments are deployed in the areas where they are most needed. With increasing global interconnectedness and the rising threat of pandemics, disease surveillance powered by AI is becoming an indispensable tool for governments, healthcare organizations, and international bodies to protect public health and mitigate risks.
Pharmaceutical and biotechnology firms are among the largest end-users of AI technologies in epidemiology. These organizations are adopting AI to enhance their drug and vaccine development processes, improve epidemiological modeling, and contribute to the understanding of disease transmission dynamics. AI technologies, particularly machine learning, are being used to analyze vast biological, clinical, and environmental data to identify potential drug candidates, predict the effectiveness of treatments, and accelerate vaccine development. Given the urgency of responding to global health challenges, pharmaceutical and biotech firms are increasingly integrating AI into their research and development (R&D) pipelines to expedite the creation of new therapies.
In the context of epidemics and pandemics, pharmaceutical and biotechnology companies are utilizing AI to rapidly assess drug and vaccine efficacy and optimize clinical trial designs. AI is also being used to simulate how viruses and diseases evolve over time, helping to predict mutations and inform vaccine development strategies. The increasing collaboration between AI-driven technology providers and biopharmaceutical companies is expected to continue expanding, making AI a cornerstone of future drug and vaccine development initiatives.
Government and public health agencies are leading the way in integrating AI into epidemiological research and response strategies. These agencies rely heavily on AI technologies for real-time surveillance, outbreak detection, and decision-making processes. With the rise of global health threats, such as the COVID-19 pandemic, the role of AI in supporting governmental health initiatives has become even more critical. AI tools enable public health authorities to track disease outbreaks, forecast epidemic trends, and implement timely interventions to mitigate their spread.
In addition to supporting disease surveillance and outbreak management, government agencies are leveraging AI for risk assessment and resource optimization. By utilizing AI models to analyze demographic, geographic, and social data, public health agencies can identify at-risk populations, anticipate healthcare needs, and allocate resources more effectively. The adoption of AI by governments and public health organizations is expected to grow, as it enhances the ability to respond to emerging health crises quickly and efficiently.
North America is currently the largest region in the AI in epidemiology market, driven by the presence of leading technology companies, healthcare organizations, and government agencies. The United States, in particular, has become a hub for the development and deployment of AI solutions in public health, thanks to robust healthcare infrastructure and significant investments in AI research. The U.S. government, through agencies such as the Centers for Disease Control and Prevention (CDC) and the National Institutes of Health (NIH), has been instrumental in funding AI research and promoting its integration into public health practices.
Moreover, the rapid growth of the AI in epidemiology market in North America is supported by collaboration between public health organizations, research institutions, and private companies. AI-driven tools are increasingly being adopted by healthcare providers and public health agencies to enhance disease surveillance, improve healthcare responses, and accelerate the development of drugs and vaccines. As the need for AI in global health initiatives continues to grow, North America is expected to maintain its leadership position in the market, with ongoing advancements in AI technologies shaping the future of epidemiology.
The competitive landscape of the AI in epidemiology market is characterized by a strong presence of both technology giants and healthcare-focused companies. Leading players include IBM Watson Health, Google Health, Microsoft, and Palantir Technologies, as well as specialized AI firms such as BlueDot and HealthMap. These companies are at the forefront of developing AI-powered solutions for disease surveillance, outbreak detection, and drug development.
The market is witnessing increasing collaborations between AI technology providers, pharmaceutical companies, and government health agencies, aiming to leverage AI for better disease prediction, outbreak management, and healthcare resource optimization. Competitive dynamics are driven by the need for more accurate predictive models, faster detection capabilities, and the ability to handle vast amounts of healthcare data. As AI technologies continue to evolve, companies that can integrate AI with epidemiological expertise and public health policies will hold a competitive advantage in the growing market.
Report Features |
Description |
Market Size (2023) |
USD 431.7 million |
Forecasted Value (2030) |
USD 1,162.1 million |
CAGR (2024 – 2030) |
15.2% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Epidemiology Market By Application (Disease Surveillance, Epidemic Forecasting, Risk Assessment, Outbreak Detection and Monitoring, Drug & Vaccine Development), By End-Use Industry (Healthcare Organizations, Research Institutions, Government & Public Health Agencies, Pharmaceutical & Biotechnology Firms) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
IBM Corporation, Google LLC (Alphabet Inc.), Microsoft Corporation, NVIDIA Corporation, Accenture plc, Epidemico (a part of Verily), BlueDot, HealthMap (Boston Children’s Hospital), Palantir Technologies, Tempus Labs, Quidel Corporation, Inovio Pharmaceuticals, Moderna, Inc., Siemens Healthineers, Global Data Health |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Epidemiology Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Disease Surveillance |
4.1.1. Infectious Disease |
4.1.2. Non-communicable Diseases |
4.2. Epidemic Forecasting |
4.3. Risk Assessment |
4.4. Outbreak Detection and Monitoring |
4.5. Drug & Vaccine Development |
4.6. Others |
5. AI in Epidemiology Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Healthcare Organizations |
5.2. Research Institutions |
5.3. Government & Public Health Agencies |
5.4. Pharmaceutical & Biotechnology Firms |
5.5. Others |
6. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Regional Overview |
6.2. North America |
6.2.1. Regional Trends & Growth Drivers |
6.2.2. Barriers & Challenges |
6.2.3. Opportunities |
6.2.4. Factor Impact Analysis |
6.2.5. Technology Trends |
6.2.6. North America AI in Epidemiology Market, by Application |
6.2.7. North America AI in Epidemiology Market, by End-Use Industry |
6.2.8. By Country |
6.2.8.1. US |
6.2.8.1.1. US AI in Epidemiology Market, by Application |
6.2.8.1.2. US AI in Epidemiology Market, by End-Use Industry |
6.2.8.2. Canada |
6.2.8.3. Mexico |
*Similar segmentation will be provided for each region and country |
6.3. Europe |
6.4. Asia-Pacific |
6.5. Latin America |
6.6. Middle East & Africa |
7. Competitive Landscape |
7.1. Overview of the Key Players |
7.2. Competitive Ecosystem |
7.2.1. Level of Fragmentation |
7.2.2. Market Consolidation |
7.2.3. Product Innovation |
7.3. Company Share Analysis |
7.4. Company Benchmarking Matrix |
7.4.1. Strategic Overview |
7.4.2. Product Innovations |
7.5. Start-up Ecosystem |
7.6. Strategic Competitive Insights/ Customer Imperatives |
7.7. ESG Matrix/ Sustainability Matrix |
7.8. Manufacturing Network |
7.8.1. Locations |
7.8.2. Supply Chain and Logistics |
7.8.3. Product Flexibility/Customization |
7.8.4. Digital Transformation and Connectivity |
7.8.5. Environmental and Regulatory Compliance |
7.9. Technology Readiness Level Matrix |
7.10. Technology Maturity Curve |
7.11. Buying Criteria |
8. Company Profiles |
8.1. IBM Corporation |
8.1.1. Company Overview |
8.1.2. Company Financials |
8.1.3. Product/Service Portfolio |
8.1.4. Recent Developments |
8.1.5. IMR Analysis |
*Similar information will be provided for other companies |
8.2. Google LLC (Alphabet Inc.) |
8.3. Microsoft Corporation |
8.4. NVIDIA Corporation |
8.5. Accenture plc |
8.6. Epidemico (a part of Verily) |
8.7. BlueDot |
8.8. HealthMap (Boston Children’s Hospital) |
8.9. Palantir Technologies |
8.10. Tempus Labs |
8.11. Quidel Corporation |
8.12. Inovio Pharmaceuticals |
8.13. Moderna, Inc. |
8.14. Siemens Healthineers |
8.15. Global Data Health |
9. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Epidemiology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Epidemiology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Epidemiology ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Epidemiology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.