sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Energy Market was valued at USD 12.7 billion in 2023 and will surpass USD 48.5 billion by 2030; growing at a CAGR of 21.1% during 2024 - 2030.
The AI in energy market is evolving rapidly as technology advances and the demand for cleaner, more efficient energy solutions rises. With increasing energy consumption and an accelerated global shift towards sustainable energy sources, AI has become a crucial tool in optimizing energy management, improving infrastructure, and driving sustainability. From improving grid reliability to enhancing renewable energy generation, AI technologies are being increasingly deployed to manage energy production, distribution, and consumption. The market is characterized by a wide range of applications including energy optimization, predictive maintenance, and renewable energy management, all of which are pivotal to creating smarter, more resilient energy systems globally.
The solutions segment in AI for energy is currently the largest, particularly in the realm of energy optimization. As the energy sector faces pressures to reduce costs, increase reliability, and minimize environmental impact, AI-driven optimization solutions have become essential. These systems use machine learning and big data analytics to forecast energy demand, optimize energy distribution, and manage grid systems in real-time. By enhancing the efficiency of energy generation and consumption, AI solutions in energy optimization reduce operational costs for utilities and help industries meet their sustainability targets. The adoption of AI-powered solutions enables better management of power grids, which is increasingly important as more renewable energy sources are integrated, requiring real-time adjustments and more sophisticated forecasting techniques.
Energy optimization also plays a key role in demand-side management, where AI helps industrial and commercial sectors monitor their energy consumption patterns and improve energy usage efficiency. This segment has seen considerable growth due to the increasing demand for energy-efficient solutions. With utilities worldwide investing in smart grid technologies, energy optimization solutions are set to maintain their dominant position in the AI energy market, positioning themselves as essential tools in the future of energy management.
Among the application areas of AI in energy, renewable energy management is the fastest-growing subsegment. With global sustainability goals and the transition to cleaner energy sources taking center stage, AI is increasingly being deployed to manage renewable energy generation and distribution more effectively. AI algorithms can predict weather patterns, optimize the operation of solar and wind energy systems, and manage energy storage, ensuring maximum efficiency. These capabilities are crucial as the supply of renewable energy can be variable, and AI helps balance the grid by forecasting energy demand and adjusting generation from renewable sources accordingly.
As renewable energy penetration increases globally, AI's role in integrating these technologies into the grid is vital. AI systems optimize energy storage solutions, ensuring that excess energy generated from renewable sources is efficiently stored for future use. As governments and private sectors continue to invest in renewable energy, AI in renewable energy management is projected to grow significantly, making it a key driver of the AI in energy market.
The Asia-Pacific region is experiencing the fastest growth in the AI in energy market. This growth is primarily driven by countries like China, Japan, and India, which are making significant investments in renewable energy technologies and smart grid systems. China, in particular, is a leader in AI adoption within the energy sector, with the government investing heavily in smart city initiatives and AI-powered energy management systems. The region’s large-scale infrastructure projects, the growing demand for energy-efficient solutions, and the focus on sustainable development are all factors contributing to the rapid adoption of AI technologies in energy. With increasing urbanization, industrialization, and government-backed energy initiatives, the Asia-Pacific region is expected to continue leading global growth in AI-powered energy solutions.
The AI in energy market is highly competitive, with several key players leading the way in innovation and technological development. Major technology companies like Google, IBM, and Microsoft are heavily invested in AI-driven solutions for energy management, contributing to the market's rapid expansion. These companies are collaborating with energy giants to enhance smart grid technologies, renewable energy management, and energy optimization. For example, Google has partnered with energy companies to integrate AI into their operations, helping utilities manage power grids more efficiently and reduce carbon footprints.
On the energy side, companies like Siemens, General Electric, and Schneider Electric are leveraging AI to optimize energy production and improve grid automation. Start-ups and smaller technology companies are also emerging as key players, offering specialized AI solutions for energy systems, particularly in the renewable energy and predictive maintenance sectors. The competitive landscape is marked by significant investments in R&D, strategic partnerships, and mergers and acquisitions, as companies work to expand their portfolios and meet the growing demand for AI-driven energy solutions. With the increasing shift toward sustainable energy and the digitalization of the energy industry, the market is poised for continued innovation and expansion in the coming years.
Report Features |
Description |
Market Size (2023) |
USD 12.7 billion |
Forecasted Value (2030) |
USD 48.5 billion |
CAGR (2024 – 2030) |
21.1% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in energy Market By Type (Solutions, Services), By Application (Robotics, Renewable Energy Management, Demand Forecasting, Safety Security & Infrastructure) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Siemens AG, Alpiq, SmartCloud Inc., ABB, General Electric, Hazama Ando Corporation, ATOS SE, AppOrchid Inc., Zen Robotics Ltd., Flex Ltd |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI In Energy Market, by Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Solutions |
4.2. Services |
5. AI In Energy Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Robotics |
5.2. Renewable Energy Management |
5.3. Demand Forecasting |
5.4. Safety Security & Infrastructure |
5.5. Others |
6. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Regional Overview |
6.2. North America |
6.2.1. Regional Trends & Growth Drivers |
6.2.2. Barriers & Challenges |
6.2.3. Opportunities |
6.2.4. Factor Impact Analysis |
6.2.5. Technology Trends |
6.2.6. North America AI in energy Market, by Type |
6.2.7. North America AI in energy Market, by Application |
6.2.8. By Country |
6.2.8.1. US |
6.2.8.1.1. US AI in energy Market, by Type |
6.2.8.1.2. US AI in energy Market, by Application |
6.2.8.2. Canada |
6.2.8.3. Mexico |
*Similar segmentation will be provided for each region and country |
6.3. Europe |
6.4. Asia-Pacific |
6.5. Latin America |
6.6. Middle East & Africa |
7. Competitive Landscape |
7.1. Overview of the Key Players |
7.2. Competitive Ecosystem |
7.2.1. Level of Fragmentation |
7.2.2. Market Consolidation |
7.2.3. Product Innovation |
7.3. Company Share Analysis |
7.4. Company Benchmarking Matrix |
7.4.1. Strategic Overview |
7.4.2. Product Innovations |
7.5. Start-up Ecosystem |
7.6. Strategic Competitive Insights/ Customer Imperatives |
7.7. ESG Matrix/ Sustainability Matrix |
7.8. Manufacturing Network |
7.8.1. Locations |
7.8.2. Supply Chain and Logistics |
7.8.3. Product Flexibility/Customization |
7.8.4. Digital Transformation and Connectivity |
7.8.5. Environmental and Regulatory Compliance |
7.9. Technology Readiness Level Matrix |
7.10. Technology Maturity Curve |
7.11. Buying Criteria |
8. Company Profiles |
8.1. Siemens AG |
8.1.1. Company Overview |
8.1.2. Company Financials |
8.1.3. Product/Service Portfolio |
8.1.4. Recent Developments |
8.1.5. IMR Analysis |
*Similar information will be provided for other companies |
8.2. Alpiq |
8.3. SmartCloud Inc. |
8.4. ABB |
8.5. General Electric |
8.6. Hazama Ando Corporation |
8.7. ATOS SE |
8.8. AppOrchid Inc. |
8.9. Zen Robotics Ltd. |
8.10. Origami Energy Ltd. |
8.11. Flex Ltd |
9. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Energy Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Energy Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Energy ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Energy Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.