sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Education Market was valued at USD 2.1 billion in 2023 and will surpass USD 5.2 billion by 2030; growing at a CAGR of 13.8% during 2024 - 2030.
The AI in Education Market is witnessing rapid growth, driven by technological advancements, rising investments in educational technologies, and an increasing demand for personalized learning experiences. Artificial intelligence (AI) is transforming the education sector by enhancing the learning process, optimizing educational institutions’ operations, and delivering real-time data analytics for better decision-making.
In the AI in Education Market, the learning platforms segment stands as the largest contributor due to the growing demand for personalized learning solutions. These platforms utilize AI to create customized learning experiences by analyzing student behavior, preferences, and learning patterns. As a result, they can adapt content and provide real-time feedback tailored to the needs of individual learners. The increasing popularity of e-learning, particularly accelerated by the COVID-19 pandemic, has further amplified the growth of AI-powered learning platforms.
The largest subsegment within learning platforms is AI-enabled adaptive learning systems, which allow educators to deliver personalized lessons and activities based on each student’s learning curve. This technology optimizes learning efficiency by addressing knowledge gaps and reinforcing concepts where students struggle, contributing to improved outcomes. The integration of natural language processing (NLP) and machine learning into these systems allows for seamless interaction between students and platforms, fostering a more engaging learning environment.
The intelligent tutoring systems (ITS) segment is poised for significant growth, making it the fastest-growing segment within the AI in Education Market. ITS leverages AI to provide real-time tutoring and support to students, filling the gap left by traditional teaching methods. These systems are designed to monitor student progress, identify weaknesses, and offer tailored instructional support, all without the need for direct human intervention.
The fastest-growing subsegment within intelligent tutoring systems is AI-based virtual tutors, which offer real-time, interactive learning experiences. Virtual tutors can answer questions, explain complex concepts, and provide feedback in a conversational manner, mimicking human tutors. These systems are increasingly being adopted by educational institutions seeking cost-effective ways to scale personalized tutoring, particularly in subjects like mathematics, science, and language learning.
The assessment and evaluation segment holds a significant share of the AI in Education Market, driven by the efficiency and accuracy that AI brings to grading and feedback processes. Educational institutions are increasingly utilizing AI-powered assessment tools to automate grading, reduce biases, and provide faster feedback to students. This shift not only improves operational efficiency but also enables educators to focus on higher-order tasks such as curriculum design and student mentoring.
The largest subsegment within assessment and evaluation is automated grading systems, which are widely adopted in both higher education and K-12 settings. These systems leverage machine learning algorithms to assess open-ended responses, essays, and other qualitative work with greater accuracy and consistency than traditional grading methods. Automated grading reduces the workload of educators while ensuring timely and impartial evaluations, making it an indispensable tool in modern education.
The administrative tasks segment is expected to witness rapid growth, making it one of the fastest-growing segments in the AI in Education Market. Educational institutions are increasingly adopting AI to streamline administrative processes such as enrollment, scheduling, and resource management. AI-driven tools help automate routine tasks, allowing administrative staff to focus on strategic planning and improving the student experience.
The fastest-growing subsegment within administrative tasks is AI-based student information systems (SIS). These systems utilize AI to manage student data, track academic progress, and predict outcomes such as graduation rates and potential dropouts. By providing real-time insights into student performance, AI-based SIS helps institutions make data-driven decisions and allocate resources more effectively, enhancing both operational efficiency and student success.
The learning management systems (LMS) segment remains one of the largest in the AI in Education Market, driven by the widespread adoption of LMS platforms in higher education and corporate training environments. These systems offer a centralized platform for managing, delivering, and tracking educational content and assessments, making them essential for institutions seeking to modernize their learning infrastructure.
The largest subsegment within LMS is AI-powered content management systems, which help educators curate and deliver personalized learning materials based on the needs and progress of individual students. These systems use AI to recommend relevant resources, monitor student engagement, and adapt the learning journey accordingly, ensuring that each student receives the appropriate level of challenge and support.
Geographically, North America holds the largest share in the AI in Education Market, attributed to the region’s high adoption rate of educational technologies and substantial investments in AI research and development. The United States, in particular, is home to some of the world’s leading AI innovators, and the education sector has embraced AI to enhance learning outcomes and streamline institutional operations.
The U.S. government’s support for AI in education, coupled with the presence of major technology companies and startups, has led to widespread implementation of AI solutions in K-12 schools, higher education, and corporate training programs. Additionally, the increasing demand for personalized learning experiences, particularly in online and hybrid learning environments, has further accelerated the adoption of AI in education across North America.
The AI in Education Market is highly competitive, with a mix of established technology companies and emerging startups driving innovation. Key players are focusing on expanding their AI capabilities through acquisitions, partnerships, and the development of advanced AI-powered educational tools.
The top 10 companies leading the AI in Education Market include:
The competitive landscape is characterized by rapid advancements in AI technologies and the growing need for personalized, data-driven learning solutions. Companies are increasingly focusing on enhancing their AI offerings to gain a competitive edge in this burgeoning market.
The report will help you answer some of the most critical questions in the AI in Education Market. A few of them are as follows:
Report Features |
Description |
Market Size (2023) |
USD 2.1 billion |
Forecasted Value (2030) |
USD 5.2 billion |
CAGR (2024 – 2030) |
13.8% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Education Market By Solution Type (Learning Management Systems (LMS), Virtual Classrooms, Tutoring Systems, Assessment and Evaluation Tools, Content Creation and Management), By Technology (Machine Learning, Natural Language Processing (NLP), Predictive Analytics), By Deployment Mode (Cloud-based Solutions, On-premises Solutions), and By End User (Educational Institutions, Corporate Training, EdTech Companies) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Education Market, by Solution Type (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Learning Management Systems (LMS) |
4.2. Virtual Classrooms |
4.3. Tutoring Systems |
4.4. Assessment and Evaluation Tools |
4.5. Content Creation and Management |
4.6. Others |
5. AI in Education Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning |
5.2. Natural Language Processing (NLP) |
5.3. Predictive Analytics |
5.4. Others |
6. AI in Education Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Cloud-based Solutions |
6.2. On-premises Solutions |
7. AI in Education Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Educational Institutions |
7.2. Corporate Training |
7.3. EdTech Companies |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI in Education Market, by Solution Type |
8.2.7. North America AI in Education Market, by Technology |
8.2.8. North America AI in Education Market, by Deployment Mode |
8.2.9. North America AI in Education Market, by End User |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI in Education Market, by Solution Type |
8.2.10.1.2. US AI in Education Market, by Technology |
8.2.10.1.3. US AI in Education Market, by Deployment Mode |
8.2.10.1.4. US AI in Education Market, by End User |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. Blackboard |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Duolingo |
10.3. Edmodo |
10.4. Google |
10.5. IBM |
10.6. Knewton |
10.7. McGraw-Hill Education |
10.8. Microsoft |
10.9. Pearson |
10.10. Squirrel AI Learning |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Education Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Education Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Education ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Education Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.