sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Computer Vision Market was valued at USD 21.8 billion in 2023 and will surpass USD 39.6 billion by 2030; growing at a CAGR of 8.9% during 2024 - 2030.
The AI in computer vision market is experiencing rapid growth as the demand for automated visual analysis continues to rise across various industries. Computer vision, which enables machines to interpret and make decisions based on visual data, has seen significant advancements with the integration of artificial intelligence (AI). This technology is enabling more accurate, faster, and efficient visual processing for a range of applications, from healthcare and automotive to retail and industrial automation. With AI, computer vision systems are becoming smarter, learning from vast amounts of visual data to improve decision-making, enhance efficiency, and offer new possibilities for innovation.
AI-driven computer vision is transforming industries by providing solutions that are more scalable, precise, and adaptive. From autonomous vehicles to advanced security systems and real-time retail analytics, the application of computer vision in AI is bringing about significant changes. With growing technological advancements and the expanding use of visual data across industries, the AI in computer vision market is expected to grow exponentially, offering new opportunities for both established players and emerging tech startups.
Deep learning is a key technology driving the rapid adoption of AI in computer vision, especially in the healthcare industry. By using neural networks with multiple layers, deep learning models can analyze complex visual data, enabling more accurate diagnostics and improved patient care. In medical imaging, for instance, deep learning algorithms can detect abnormalities in radiology scans, pathology slides, and other medical images with higher accuracy than traditional methods. These capabilities are not only enhancing diagnostic precision but are also significantly reducing the time it takes to process and analyze medical images, which is crucial in healthcare environments where timely decisions can save lives.
Deep learning also plays a pivotal role in personalized medicine, where it helps doctors and medical professionals assess individual patient data to determine the best course of treatment. With the continued development of AI-powered computer vision systems, healthcare providers are increasingly turning to deep learning to automate and enhance diagnostic processes, leading to improved outcomes and better patient experiences. As healthcare organizations continue to embrace these technologies, deep learning will remain a key enabler of AI-driven advancements in medical imaging and other areas of healthcare.
Industrial automation is the fastest-growing application for AI in computer vision, driven by the increasing need for efficiency, accuracy, and safety in manufacturing environments. AI-powered computer vision systems are being deployed to automate quality control, monitor production lines, and detect defects in real-time, leading to reduced operational costs and minimized human error. These systems can inspect products at a level of precision that is beyond human capabilities, ensuring that only high-quality items reach consumers. This is particularly important in industries such as automotive, electronics, and pharmaceuticals, where product quality and safety are of utmost importance.
The ability of AI to learn from data and improve over time has revolutionized industrial automation. Computer vision systems can now monitor assembly lines, track inventory, and even predict when machinery requires maintenance, thus preventing downtime and optimizing production. As industries continue to embrace automation to remain competitive, the demand for AI-based computer vision systems in industrial settings is expected to grow rapidly. This technology is not only enhancing productivity but also ensuring a higher level of quality control and operational efficiency.
Enterprises represent the largest end users of AI in the computer vision market, driven by the need for advanced visual data analysis across a variety of business functions. From improving customer experiences in retail to enhancing security systems in corporate environments, enterprises are increasingly adopting AI-based computer vision technologies to gain a competitive edge. The integration of computer vision in business operations allows enterprises to automate processes, analyze customer behavior, and ensure product quality, all while reducing operational costs.
In the retail sector, for instance, AI in computer vision is used to analyze consumer behavior, optimize store layouts, and personalize marketing efforts. In corporate security, it is used to monitor and enhance surveillance systems, providing real-time insights into security threats. As enterprises continue to digitalize and automate their operations, the use of AI in computer vision is becoming more widespread, enabling businesses to achieve greater efficiency, accuracy, and insight.
North America dominates the AI in computer vision market, primarily due to the high concentration of technology companies, strong R&D investments, and early adoption of AI technologies across industries. The United States, in particular, leads in AI research and development, with several key players focusing on advancing computer vision capabilities for various applications. North American enterprises are early adopters of AI-driven solutions, especially in sectors like healthcare, automotive, retail, and security, which has led to significant market growth in the region.
Additionally, the growing focus on innovation and the availability of advanced technological infrastructure in North America have contributed to the rapid adoption of AI in computer vision. The region is home to several tech giants and startups that are pushing the boundaries of AI, contributing to the expansion of AI-powered computer vision technologies. As industries continue to embrace digital transformation, North America is expected to maintain its leadership position in the AI in computer vision market.
The competitive landscape in the AI in computer vision market is highly dynamic, with a mix of established technology companies and emerging startups driving innovation. Key players such as NVIDIA, Intel Corporation, Microsoft Corporation, Google, and Qualcomm Technologies are at the forefront of AI and computer vision research and product development. These companies are focused on enhancing AI algorithms, improving hardware capabilities, and developing new applications for computer vision technologies.
The market is also witnessing strong collaboration and partnerships between AI solution providers, tech companies, and industry-specific players to develop customized computer vision solutions for sectors such as healthcare, automotive, retail, and industrial automation. As the market grows, competition will intensify, with companies focusing on increasing AI model accuracy, expanding their portfolios, and offering integrated solutions that address the diverse needs of end users. The increasing demand for AI-powered visual analysis is likely to foster continued innovation and investment in the AI in computer vision market.
Report Features |
Description |
Market Size (2023) |
USD 21.8 billion |
Forecasted Value (2030) |
USD 39.6 billion |
CAGR (2024 – 2030) |
8.9% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Computer Vision Market By Component (Software, Hardware, Services), By Technology (Machine Learning, Deep Learning, Neural Networks), By Application (Healthcare, Automotive, Retail, Security & Surveillance, Industrial Automation), By End User (Enterprises, Research Institutions, Government, Healthcare Providers) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
NVIDIA Corporation, Intel Corporation, Alphabet Inc. (Google), Microsoft Corporation, Amazon Web Services (AWS), Qualcomm Technologies, Samsung Electronics, IBM Corporation, Sightengine, Keyence Corporation |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Computer Vision Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Software |
4.2. Hardware |
4.3. Services |
5. AI in Computer Vision Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Machine Learning |
5.2. Deep Learning |
5.3. Neural Networks |
6. AI in Computer Vision Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Healthcare |
6.2. Automotive |
6.3. Retail |
6.4. Security & Surveillance |
6.5. Industrial Automation |
6.6. Others |
7. AI in Computer Vision Market, by End User (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Enterprises |
7.2. Research Institutions |
7.3. Government |
7.4. Healthcare Providers |
8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
8.1. Regional Overview |
8.2. North America |
8.2.1. Regional Trends & Growth Drivers |
8.2.2. Barriers & Challenges |
8.2.3. Opportunities |
8.2.4. Factor Impact Analysis |
8.2.5. Technology Trends |
8.2.6. North America AI in Computer Vision Market, by Component |
8.2.7. North America AI in Computer Vision Market, by Technology |
8.2.8. North America AI in Computer Vision Market, by Application |
8.2.9. North America AI in Computer Vision Market, by End User |
8.2.10. By Country |
8.2.10.1. US |
8.2.10.1.1. US AI in Computer Vision Market, by Component |
8.2.10.1.2. US AI in Computer Vision Market, by Technology |
8.2.10.1.3. US AI in Computer Vision Market, by Application |
8.2.10.1.4. US AI in Computer Vision Market, by End User |
8.2.10.2. Canada |
8.2.10.3. Mexico |
*Similar segmentation will be provided for each region and country |
8.3. Europe |
8.4. Asia-Pacific |
8.5. Latin America |
8.6. Middle East & Africa |
9. Competitive Landscape |
9.1. Overview of the Key Players |
9.2. Competitive Ecosystem |
9.2.1. Level of Fragmentation |
9.2.2. Market Consolidation |
9.2.3. Product Innovation |
9.3. Company Share Analysis |
9.4. Company Benchmarking Matrix |
9.4.1. Strategic Overview |
9.4.2. Product Innovations |
9.5. Start-up Ecosystem |
9.6. Strategic Competitive Insights/ Customer Imperatives |
9.7. ESG Matrix/ Sustainability Matrix |
9.8. Manufacturing Network |
9.8.1. Locations |
9.8.2. Supply Chain and Logistics |
9.8.3. Product Flexibility/Customization |
9.8.4. Digital Transformation and Connectivity |
9.8.5. Environmental and Regulatory Compliance |
9.9. Technology Readiness Level Matrix |
9.10. Technology Maturity Curve |
9.11. Buying Criteria |
10. Company Profiles |
10.1. NVIDIA Corporation |
10.1.1. Company Overview |
10.1.2. Company Financials |
10.1.3. Product/Service Portfolio |
10.1.4. Recent Developments |
10.1.5. IMR Analysis |
*Similar information will be provided for other companies |
10.2. Intel Corporation |
10.3. Alphabet Inc. (Google) |
10.4. Microsoft Corporation |
10.5. Amazon Web Services (AWS) |
10.6. Qualcomm Technologies |
10.7. Samsung Electronics |
10.8. IBM Corporation |
10.9. Sightengine |
10.10. Keyence Corporation |
11. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Computer Vision Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Computer Vision Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Computer Vision ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Computer Vision Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.