sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI in Biotechnology Market was valued at USD 5.2 billion in 2023 and will surpass USD 21.1 billion by 2030; growing at a CAGR of 22.2%during 2024 - 2030.
The AI in biotechnology market is advancing rapidly, driven by the convergence of artificial intelligence (AI) with biotechnological processes. AI technologies, including machine learning, deep learning, natural language processing, and predictive analytics, are enabling more efficient research, drug development, and disease diagnosis. With increasing demand for personalized medicine and advancements in gene editing, biotechnology companies are increasingly leveraging AI to improve accuracy, reduce time-to-market, and drive innovation. The market is set for robust growth, as the ability to analyze large datasets quickly and predict outcomes with high accuracy has proven invaluable in the biotech sector.
In this evolving landscape, it is critical to understand the leading subsegments within key categories—technology, application, and end-use industry. These subsegments are shaping the future of AI in biotechnology and providing strategic opportunities for companies to lead in this transformative space.
Machine learning (ML) is the largest technology subsegment in AI for biotechnology, owing to its wide-ranging applications in drug discovery. ML algorithms are particularly effective in analyzing complex biological data, predicting molecular behavior, and identifying potential drug candidates faster and with greater accuracy. By learning from vast datasets, ML models can uncover patterns in protein structures, predict the efficacy of drug compounds, and even simulate biological processes. This enables researchers to make more informed decisions earlier in the drug development process, saving both time and costs.
ML’s role in drug discovery has become increasingly crucial as the pharmaceutical industry faces growing pressure to develop new drugs more efficiently. By automating the process of identifying promising compounds and optimizing clinical trial designs, ML accelerates the drug discovery pipeline. As the biotechnology field continues to embrace data-driven approaches, ML will remain at the forefront, driving significant advancements in pharmaceutical R&D and biotechnology innovation.
In the application category, drug discovery is the largest subsegment, primarily due to its central role in the biotechnology sector. Drug discovery is a complex and costly process, often taking years to bring a new drug to market. AI technologies, particularly machine learning and deep learning, are revolutionizing this field by significantly reducing the time required to identify new drug candidates and optimize existing compounds. AI models can predict the interactions between molecules, simulate biological environments, and analyze massive datasets from clinical trials to improve drug efficacy and safety profiles.
The integration of AI in drug discovery has led to a more efficient process, enabling faster identification of viable drug candidates and reducing the likelihood of late-stage failures. By leveraging AI, biotechnology companies can streamline their R&D efforts and accelerate the development of novel therapies. This makes drug discovery the dominant application of AI in biotechnology, with its continued growth driving innovation in the broader industry.
Pharmaceutical companies are the largest end-use industry in the AI in biotechnology market, due to their significant investment in AI-driven research and development. These companies are at the forefront of integrating AI into their R&D workflows, leveraging technologies like machine learning, deep learning, and predictive analytics to streamline drug discovery, optimize clinical trials, and improve manufacturing processes. The potential for AI to reduce costs and accelerate the time-to-market for new drugs makes it a vital tool for pharmaceutical companies, particularly in a highly competitive and heavily regulated industry.
Pharmaceutical companies are also driving the adoption of AI in personalized medicine, which tailors treatments based on individual genetic profiles. AI models that analyze patient data are helping pharmaceutical firms develop more targeted and effective therapies. This sector’s leadership in AI adoption will continue to fuel the market's growth, as pharmaceutical companies look for ways to remain competitive and improve patient outcomes.
North America is the largest region in the AI in biotechnology market, driven by a combination of advanced technological infrastructure, significant investment in research and development, and a robust healthcare system. The United States, in particular, is a leader in the biotechnology sector, with a strong focus on AI integration across drug discovery, clinical trials, and personalized medicine. Key biotechnology hubs, including Silicon Valley and Boston, are home to leading biotech firms and research institutions that are driving AI innovation in the sector.
The U.S. government’s investment in AI research and its supportive regulatory environment also contribute to North America's dominance in the market. With an increasing number of biotech firms adopting AI technologies to enhance their R&D processes, North America is expected to remain the largest market for AI in biotechnology, offering ample opportunities for both established players and new entrants to capitalize on emerging trends.
The competitive landscape of the AI in biotechnology market is marked by the presence of both established industry giants and innovative startups. Leading companies such as IBM, Google DeepMind, Roche, and Novartis are leveraging AI technologies to accelerate drug discovery, optimize clinical trials, and advance gene editing therapies. These companies are investing heavily in AI research and collaborations to stay ahead of the curve in a rapidly evolving market. IBM Watson Health, for example, has made significant strides in using AI for drug discovery and precision medicine, while Google’s DeepMind is exploring the use of AI in protein folding, an essential area in drug development.
At the same time, biotech startups are developing niche AI applications to address specific challenges in the biotechnology space, such as precision medicine and gene therapy. Partnerships and acquisitions are common in this market, with larger companies acquiring innovative AI startups to enhance their capabilities and expand their portfolios. The market remains highly competitive, with companies racing to bring cutting-edge AI solutions to biotechnology applications and unlock new possibilities for drug development and healthcare innovation.
Report Features |
Description |
Market Size (2023) |
USD 5.2 Billion |
Forecasted Value (2030) |
USD 21.1 Billion |
CAGR (2024 – 2030) |
22.2% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI in Biotechnology Market By Technology (Natural Language Processing, Machine Learning, Deep Learning, Predictive Analytics, Robotic Process Automation), By Application (Drug Discovery, Disease Diagnosis, Gene Editing & Therapy, Precision Medicine, Clinical Research & Trials), By End-Use Industry (Pharmaceutical Companies, Biotechnology Firms, Contract Research Organizations) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Atomwise, BASF SE, Bayer AG, Exscientia, Google Health (Alphabet Inc.), IBM Watson Health, Intel Corporation, Microsoft Corporation, NVIDIA Corporation, Schrödinger Inc., SRI International, Tempus and Zymergen |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI in Biotechnology Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Natural Language Processing (NLP) |
4.2. Machine Learning |
4.3. Deep Learning |
4.4. Predictive Analytics |
4.5. Robotic Process Automation (RPA) |
4.6. Others |
5. AI in Biotechnology Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Drug Discovery |
5.2. Disease Diagnosis |
5.3. Gene Editing & Therapy |
5.4. Precision Medicine |
5.5. Clinical Research & Trials |
5.6. Others |
6. AI in Biotechnology Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. Pharmaceutical Companies |
6.2. Biotechnology Firms |
6.3. Contract Research Organizations (CROs) |
6.4. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI in Biotechnology Market, by Technology |
7.2.7. North America AI in Biotechnology Market, by Application |
7.2.8. North America AI in Biotechnology Market, by End-Use Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI in Biotechnology Market, by Technology |
7.2.9.1.2. US AI in Biotechnology Market, by Application |
7.2.9.1.3. US AI in Biotechnology Market, by End-Use Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Atomwise |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. BASF SE |
9.3. Bayer AG |
9.4. Exscientia |
9.5. Google Health (Alphabet Inc.) |
9.6. IBM Watson Health |
9.7. Insilico Medicine |
9.8. Intel Corporation |
9.9. Microsoft Corporation |
9.10. NVIDIA Corporation |
9.11. Schrödinger Inc. |
9.12. SRI International |
9.13. Tempus |
9.14. Veeva Systems |
9.15. Zymergen |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI in Biotechnology Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Biotechnology Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Biotechnology ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Biotechnology Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.