sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI Hardware Market was valued at USD 54.3 billion in 2023-e and will surpass USD 186.9 billion by 2030; growing at a CAGR of 19.3% during 2024 - 2030.
The AI hardware market is experiencing a transformative phase, driven by the burgeoning demand for advanced computing capabilities to support artificial intelligence (AI) applications across various industries. This market encompasses a wide array of hardware components, including processors, graphics processing units (GPUs), application-specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs), which are specifically designed to optimize AI workloads. The increasing reliance on AI for data processing, machine learning, and deep learning applications has prompted significant investments in AI hardware, propelling market growth.
This remarkable growth is attributed to the rising adoption of AI technologies in sectors such as healthcare, automotive, finance, and retail, alongside the continuous evolution of computing technologies.
The processor segment remains the largest within the AI hardware market, primarily due to the critical role of high-performance computing in AI applications. Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are essential for executing complex algorithms and processing vast amounts of data, which are vital for machine learning and deep learning tasks. As AI applications become increasingly sophisticated, the demand for powerful processors has surged, making this segment a focal point for both manufacturers and consumers.
Moreover, the rise of cloud computing and edge computing has further amplified the need for advanced processors capable of handling AI workloads efficiently. Companies are investing heavily in developing next-generation processors optimized for AI tasks, leading to increased competition and innovation in this segment. As organizations seek to leverage AI for data-driven decision-making and operational efficiency, the processor segment is expected to maintain its leadership in the AI hardware market throughout the forecast period.
The graphics processing unit (GPU) segment is emerging as the fastest-growing segment within the AI hardware market, driven by the escalating demand for AI-driven applications across diverse industries. GPUs are highly efficient at performing parallel processing tasks, making them ideal for handling the computationally intensive workloads associated with AI training and inference. As organizations increasingly adopt AI for tasks such as image recognition, natural language processing, and autonomous systems, the demand for powerful GPUs is surging.
Additionally, the gaming industry has significantly contributed to the growth of the GPU segment, as gamers seek high-performance graphics and immersive experiences. The convergence of gaming and AI has led to innovative applications, further driving GPU demand. As leading manufacturers continuously enhance GPU capabilities and explore new applications in AI, the GPU segment is set for sustained growth, positioning it as a key driver of the overall AI hardware market.
The application-specific integrated circuit (ASIC) segment stands out as the largest within the AI hardware market, primarily due to its ability to deliver tailored solutions for specific AI applications. ASICs are custom-designed chips optimized for particular tasks, enabling higher performance and energy efficiency compared to general-purpose hardware. This specialization makes ASICs particularly attractive for data centers and organizations focused on maximizing their AI capabilities while minimizing operational costs.
The growing adoption of AI in sectors such as finance, healthcare, and telecommunications has further accelerated the demand for ASICs. Companies are leveraging ASICs for applications like real-time data processing, fraud detection, and predictive analytics, where performance and efficiency are paramount. As industries continue to prioritize customized solutions to meet their unique AI needs, the ASIC segment is expected to maintain its leadership position in the AI hardware market.
The field-programmable gate array (FPGA) segment is rapidly gaining traction as the fastest-growing segment in the AI hardware market, driven by the increasing need for flexibility and reconfigurability in AI applications. FPGAs offer unique advantages, allowing developers to tailor the hardware to specific algorithms and workloads, which is particularly beneficial in fast-evolving AI environments. This adaptability enables organizations to optimize their hardware for various AI tasks without the need for extensive redesigns, making FPGAs an attractive option for businesses looking to stay competitive.
Furthermore, the rise of edge computing has further fueled the demand for FPGAs, as they provide low-latency processing capabilities for AI applications at the network edge. Industries such as automotive, aerospace, and telecommunications are increasingly adopting FPGAs to enhance their AI-driven solutions, particularly in applications like autonomous vehicles and real-time data analytics. As the market for AI continues to expand, the FPGA segment is poised for significant growth, underscoring its importance in the broader AI hardware landscape.
The North American region is emerging as the fastest-growing market for AI hardware, driven by a combination of technological advancements, substantial investments, and a robust ecosystem of AI innovation. The United States, in particular, is home to numerous leading technology companies and research institutions that are at the forefront of AI development. The presence of major players in the AI hardware space, along with a thriving start-up ecosystem, fosters an environment conducive to innovation and growth.
Moreover, the increasing adoption of AI technologies across various sectors, including healthcare, finance, and manufacturing, is further propelling market expansion in North America. Government initiatives and funding programs aimed at promoting AI research and development are also contributing to the region's growth. As organizations continue to prioritize AI-driven solutions to enhance operational efficiency and competitiveness, North America is poised to maintain its position as a key player in the global AI hardware market.
The competitive landscape of the AI hardware market is characterized by the presence of several key players and a dynamic environment marked by rapid technological advancements. Leading companies such as NVIDIA Corporation, Intel Corporation, Advanced Micro Devices, Inc. (AMD), and Google LLC dominate the market by offering a diverse range of AI hardware solutions tailored to various applications. These companies are actively engaged in strategic partnerships, mergers, and acquisitions to enhance their market presence and expand their product portfolios.
Furthermore, the market is witnessing the emergence of niche players and start-ups specializing in innovative AI hardware solutions. These companies are focusing on developing cutting-edge technologies, such as neuromorphic chips and energy-efficient processors, to cater to the evolving needs of consumers and industries. As competition intensifies, players in the AI hardware market are likely to invest heavily in research and development to maintain their competitive edge and capitalize on emerging trends, ensuring a vibrant and rapidly evolving market landscape through the forecast period and beyond.
The report will help you answer some of the most critical questions in the AI Hardware Market. A few of them are as follows:
Report Features |
Description |
Market Size (2023-e) |
USD 54.3 billion |
Forecasted Value (2030) |
USD 186.9 billion |
CAGR (2024-2030) |
19.3% |
Base Year for Estimation |
2023-e |
Historic Year |
2022 |
Forecast Period |
2024-2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI Hardware Market By Type (Storage, Processor, Memory, Network), By IC Type (FPGA, CPU, GPU, ASIC), By Application (Driver Monitoring Systems, Surveillance & Security, Training & Simulation, Imaging & Diagnosis), By Technology (Machine Learning, Computer Vision), By Deployment Mode (Cloud, On-premise), By End-use Industry (IT & Telecom, BFSI, E-commerce, Healthcare) |
Regional Analysis |
North America (US, Canada), Europe (Germany, France, UK, Spain, Italy & Rest of Europe), Asia Pacific (China, Japan, South Korea, India, and rest of Asia Pacific), Latin America (Brazil, Mexico, Argentina, & Rest of Latin America), Middle East & Africa (Saudi Arabia, South Africa, Turkey, United Arab Emirates, & Rest of MEA) |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1.Introduction |
1.1.Market Definition |
1.2.Scope of the Study |
1.3.Research Assumptions |
1.4.Study Limitations |
2.Research Methodology |
2.1.Research Approach |
2.1.1.Top-Down Method |
2.1.2.Bottom-Up Method |
2.1.3.Factor Impact Analysis |
2.2.Insights & Data Collection Process |
2.2.1.Secondary Research |
2.2.2.Primary Research |
2.3.Data Mining Process |
2.3.1.Data Analysis |
2.3.2.Data Validation and Revalidation |
2.3.3.Data Triangulation |
3.Executive Summary |
3.1.Major Markets & Segments |
3.2.Highest Growing Regions and Respective Countries |
3.3.Impact of Growth Drivers & Inhibitors |
3.4.Regulatory Overview by Country |
4.AI Hardware Market, by Type (Market Size & Forecast: USD Billion, 2024 – 2030) |
4.1.Processor |
4.2.Memory |
4.3.Network |
4.4.Storage |
5.AI Hardware Market, by IC Type (Market Size & Forecast: USD Billion, 2024 – 2030) |
5.1.FPGA |
5.2.GPU |
5.3.ASIC |
5.4.CPU |
5.5.Others |
6.AI Hardware Market, by Application (Market Size & Forecast: USD Billion, 2024 – 2030) |
6.1.Disaster Management |
6.2.Imaging & Diagnosis |
6.3.Surveillance & Security |
6.4.Driver Monitoring Systems |
6.5.Visual Inspection |
6.6.Training & Simulation |
6.7.Robotic Surgery |
7.AI Hardware Market, by Technology (Market Size & Forecast: USD Billion, 2024 – 2030) |
7.1.Machine Learning |
7.1.1.Deep Learning |
7.1.2.Un-supervised Learning |
7.1.3.Supervised Learning |
7.2.Computer Vision |
8.AI Hardware Market, by Deployment Mode (Market Size & Forecast: USD Billion, 2024 – 2030) |
8.1.Cloud |
8.2.On-premise |
9.AI Hardware Market, by End-use Industry (Market Size & Forecast: USD Billion, 2024 – 2030) |
9.1.IT & Telecom |
9.2.Education |
9.3.BFSI |
9.4.Retail & E-commerce |
9.5.Healthcare |
9.6.Agriculture |
9.7.Others |
10.Regional Analysis (Market Size & Forecast: USD Billion, 2024 – 2030) |
10.1.Regional Overview |
10.2.North America |
10.2.1.Regional Trends & Growth Drivers |
10.2.2.Barriers & Challenges |
10.2.3.Opportunities |
10.2.4.Factor Impact Analysis |
10.2.5.Technology Trends |
10.2.6.North America AI Hardware Market, by Type |
10.2.7.North America AI Hardware Market, by IC Type |
10.2.9.North America AI Hardware Market, by Application |
10.2.10.North America AI Hardware Market, by Technology |
10.2.11.North America AI Hardware Market, by Deployment Mode |
10.2.12.North America AI Hardware Market, by End-use Industry |
*Similar segmentation will be provided at each regional level |
10.3.By Country |
10.3.1.US |
10.3.1.1.US AI Hardware Market, by Type |
10.3.1.2.US AI Hardware Market, by IC Type |
10.3.1.3.US AI Hardware Market, by Application |
10.3.1.4.US AI Hardware Market, by Technology |
10.3.1.5.US AI Hardware Market, by Deployment Mode |
10.3.1.6.US AI Hardware Market, by End-use Industry |
10.3.2.Canada |
*Similar segmentation will be provided at each country level |
10.4.Europe |
10.5.APAC |
10.6.Latin America |
10.7.Middle East & Africa |
11.Competitive Landscape |
11.1.Overview of the Key Players |
11.2.Competitive Ecosystem |
11.2.1.Platform Manufacturers |
11.2.2.Subsystem Manufacturers |
11.2.3.Service Providers |
11.2.4.Software Providers |
11.3.Company Share Analysis |
11.4.Company Benchmarking Matrix |
11.4.1.Strategic Overview |
11.4.2.Product Innovations |
11.5.Start-up Ecosystem |
11.6.Strategic Competitive Insights/ Customer Imperatives |
11.7.ESG Matrix/ Sustainability Matrix |
11.8.Manufacturing Network |
11.8.1.Locations |
11.8.2.Supply Chain and Logistics |
11.8.3.Product Flexibility/Customization |
11.8.4.Digital Transformation and Connectivity |
11.8.5.Environmental and Regulatory Compliance |
11.11.Technology Readiness Level Matrix |
11.10.Technology Maturity Curve |
11.11.Buying Criteria |
12.Company Profiles |
12.1.NVIDIA |
12.1.1.Company Overview |
12.1.2.Company Financials |
12.1.3.Product/Service Portfolio |
12.1.4.Recent Developments |
12.1.5.IMR Analysis |
*Similar information will be provided for other companies |
12.2.Intel |
12.3.Microsoft |
12.4.Google |
12.5.IBM |
12.6.AMD |
12.7.Samsung |
12.8.Huawei |
12.9.Apple |
12.10.Qualcomm |
13.Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI Hardware Market. In the process, the analysis was also done to estimate the parent market and relevant adjacencies to major the impact of them on the AI hardware Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary Research
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary Research
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI hardware ecosystem. The primary research objectives included:
Market Size Estimation
A combination of top-down and bottom-up approaches was utilized to estimate the overall size of the AI hardware market. These methods were also employed to estimate the size of various sub-segments within the market. The market size estimation methodology encompassed the following steps:
Data Triangulation
To ensure the accuracy and reliability of the market size estimates, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size estimates.