sales@intentmarketresearch.com

  +1 463-583-2713

AI Governance Market by Component (Solutions, Services), By Deployment Mode (Cloud-Based, On-Premises), By Application (Risk Management, Compliance Management, Data Privacy & Security, Performance Monitoring, Ethical AI & Bias Prevention), By End-User Industry (IT & Telecom, Healthcare & Life Sciences, Banking, Financial Services & Insurance (BFSI), Retail & E-commerce, Government & Public Sector, Manufacturing), and By Region; Global Insights & Forecast (2024 – 2030)

Published: December, 2024  
|   Report ID: TMT4813  
|   Technology, Media, and Telecommunications

As per Intent Market Research, the AI Governance Market was valued at USD 0.8 billion in 2023 and will surpass USD 7.2 billion by 2030; growing at a CAGR of 36.0% during 2024 - 2030.

The AI governance market is growing rapidly as businesses and organizations strive to ensure the ethical, transparent, and responsible use of artificial intelligence technologies. AI governance frameworks are crucial for managing the risks associated with AI systems, such as bias, privacy violations, and lack of transparency. These frameworks provide essential tools and strategies to ensure AI deployments comply with regulatory standards, maintain accountability, and align with ethical considerations. As AI becomes more integrated across industries like healthcare, finance, and government, the need for comprehensive AI governance solutions has expanded significantly.

The market for AI governance is segmented by component, deployment mode, application, and end-user industry. Each segment plays a critical role in shaping the future of AI governance, with solutions and services tailored to meet the needs of diverse industries. Solutions, deployment models, and applications continue to evolve as technology advances, and regulatory demands increase. Below, we explore the most prominent subsegments within each of these areas, providing insights into their growth drivers and market dynamics.

Solutions Segment is Largest Owing to Rising Demand for Governance Platforms

Among the two primary components in AI governance, the solutions segment is the largest. AI governance solutions, including governance platforms and AI auditing tools, are in high demand as companies and regulatory bodies recognize the need to implement clear oversight on AI systems. These solutions offer functionalities like bias detection, risk management, algorithmic transparency, and compliance tracking. They are integral to ensuring that AI models operate in a way that is both ethical and legally sound, especially in regulated sectors such as finance, healthcare, and government.

The growing complexity of AI systems, along with the increased focus on responsible AI practices, has made the demand for governance solutions even more critical. Key players in the market offer robust solutions designed to monitor AI system behaviors, ensure compliance with privacy regulations like GDPR, and provide insights into the ethical implications of AI decisions. As businesses seek to build trust with consumers and regulators, AI governance solutions are becoming essential to achieving transparency and accountability in AI applications.

AI Governance Market Size

Cloud-Based Deployment Mode is Fastest Growing Due to Scalability and Flexibility

The cloud-based deployment mode is the fastest growing in the AI governance market. Cloud-based platforms offer significant advantages, including scalability, flexibility, and cost-effectiveness. They allow businesses to implement AI governance solutions without heavy upfront investments in hardware or infrastructure. With the growing adoption of cloud computing services, companies can access AI governance tools through SaaS (Software-as-a-Service) models, enabling easier integration with existing workflows and AI systems.

Cloud-based solutions also provide the agility needed to manage and scale AI governance practices across multiple business units and geographical locations. The ability to quickly adapt to changing regulations and industry standards is crucial as AI technologies evolve rapidly. Additionally, the cloud’s data storage capabilities and computing power support large-scale AI model audits, performance monitoring, and compliance tracking in real-time. These features are making cloud-based deployment models the preferred choice for businesses looking to manage AI governance with greater efficiency and flexibility.

Risk Management Application is Largest Owing to Growing Need for AI Risk Mitigation

In the application segment, risk management is the largest and most critical area of focus within AI governance. As AI technologies become more pervasive across industries, businesses face increasing risks related to data privacy breaches, algorithmic bias, and lack of transparency. Risk management tools and platforms play a key role in identifying, assessing, and mitigating these risks, ensuring that AI systems align with both ethical guidelines and regulatory requirements.

AI risk management involves a combination of auditing tools, performance monitoring, and compliance checks to detect potential issues early in the deployment of AI systems. These tools help businesses address concerns such as bias in AI algorithms, which can have a significant impact on decision-making processes. In sectors like healthcare and finance, where trust and accuracy are paramount, managing AI risks is particularly crucial. This focus on risk mitigation will continue to drive the demand for AI governance solutions that offer advanced risk management capabilities, positioning this application as a leader in the market.

Healthcare & Life Sciences End-User Industry is Largest Owing to Sensitive Data Handling

The healthcare and life sciences industry is the largest end-user of AI governance solutions. This industry handles vast amounts of sensitive patient data and relies increasingly on AI for tasks such as diagnostics, personalized medicine, and drug discovery. As healthcare systems around the world digitize and adopt AI technologies, the need for robust governance frameworks to protect patient privacy, ensure data security, and address ethical concerns has become paramount.

AI governance solutions in healthcare ensure compliance with stringent regulatory requirements, such as HIPAA (Health Insurance Portability and Accountability Act) and GDPR, while mitigating the risks associated with AI bias and inaccuracies in medical decision-making. Moreover, as AI in healthcare continues to evolve with advancements like AI-assisted surgeries and diagnostic tools, healthcare providers and regulators must adapt their governance practices to ensure that these systems function safely and equitably. The healthcare industry’s reliance on AI-driven innovations makes it the largest sector driving the demand for AI governance solutions.

North America Region is Largest Due to Strong Regulatory Landscape and AI Adoption

The North America region is the largest market for AI governance, driven by the presence of leading technology companies, regulatory frameworks, and high levels of AI adoption across industries. The U.S. and Canada are at the forefront of AI development and deployment, with many of the world’s largest technology firms, including IBM, Google, and Microsoft, based in this region. These companies are actively involved in developing AI governance solutions and shaping the regulatory landscape for responsible AI practices.

North America’s leadership in AI governance is also supported by robust government regulations and industry standards that encourage the ethical use of AI. For example, the U.S. has implemented frameworks like the Algorithmic Accountability Act, which requires companies to audit AI systems for bias and transparency. This regulatory push, combined with strong demand from industries such as healthcare, finance, and manufacturing, positions North America as the largest region in the AI governance market.

AI Governance Market Size by Region 2030

Competitive Landscape and Leading Companies

The AI governance market is highly competitive, with several key players leading the way in providing AI governance solutions and services. IBM, Microsoft, Google, and Accenture are some of the dominant players in the market, offering comprehensive platforms for AI auditing, risk management, and compliance tracking. These companies invest heavily in research and development to enhance their AI governance offerings, ensuring they remain at the cutting edge of AI ethics, transparency, and accountability.

Additionally, consulting and audit firms like Deloitte, PwC, and KPMG play a significant role in the AI governance space, providing advisory services to businesses seeking to implement responsible AI frameworks. As AI technologies continue to evolve, the competitive landscape will likely see more strategic partnerships and acquisitions aimed at bolstering AI governance capabilities. The market is expected to become more dynamic as companies strive to meet the growing demand for ethical and compliant AI systems.

Recent Developments:

  • IBM Corporation launched an AI governance solution focused on enhancing transparency and accountability for AI systems. The solution helps organizations audit, monitor, and mitigate risks related to AI models and their outcomes.
  • Microsoft introduced a new AI ethics initiative aimed at helping organizations implement responsible AI practices. This initiative includes a comprehensive framework for governance, ethical decision-making, and regulatory compliance.
  • Amazon Web Services (AWS) partnered with several global organizations to provide AI auditing and risk management solutions as part of its new AI governance platform designed for industries handling sensitive data.
  • Oracle Corporation announced updates to its AI governance tools, focusing on risk management, compliance tracking, and algorithmic transparency to meet growing demands for AI accountability in regulated industries.
  • Accenture acquired a leading AI consulting firm to strengthen its AI governance capabilities. This acquisition aims to enhance Accenture’s offerings in the areas of AI auditing, compliance, and ethical risk mitigation

List of Leading Companies:

  • IBM Corporation
  • Microsoft Corporation
  • Google LLC
  • Accenture PLC
  • Oracle Corporation
  • Amazon Web Services (AWS)
  • SAP SE
  • Salesforce
  • Palantir Technologies
  • Cognizant Technology Solutions
  • Infosys Ltd.
  • Capgemini
  • PwC
  • Deloitte
  • KPMG

Report Scope:

Report Features

Description

Market Size (2023)

USD 0.8 Billion

Forecasted Value (2030)

USD 7.2 Billion

CAGR (2024 – 2030)

36.0%

Base Year for Estimation

2023

Historic Year

2022

Forecast Period

2024 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI Governance Market by Component (Solutions, Services), By Deployment Mode (Cloud-Based, On-Premises), By Application (Risk Management, Compliance Management, Data Privacy & Security, Performance Monitoring, Ethical AI & Bias Prevention), By End-User Industry (IT & Telecom, Healthcare & Life Sciences, Banking, Financial Services & Insurance (BFSI), Retail & E-commerce, Government & Public Sector, Manufacturing)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

IBM Corporation, Microsoft Corporation, Google LLC, Accenture PLC, Oracle Corporation, Amazon Web Services (AWS), SAP SE, Salesforce, Palantir Technologies, Cognizant Technology Solutions, Infosys Ltd., Capgemini, PwC, Deloitte, KPMG

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. AI Governance Market, by Component (Market Size & Forecast: USD Million, 2022 – 2030)

   4.1. Solutions

   4.2. Services

5. AI Governance Market, by Deployment Mode (Market Size & Forecast: USD Million, 2022 – 2030)

   5.1. Cloud-Based

   5.2. On-Premises

6. AI Governance Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030)

   6.1. Risk Management

   6.2. Compliance Management

   6.3. Data Privacy & Security

   6.4. Performance Monitoring

   6.5. Ethical AI & Bias Prevention

   6.6. Others

7. AI Governance Market, by End-User Industry (Market Size & Forecast: USD Million, 2022 – 2030)

   7.1. IT & Telecom

   7.2. Healthcare & Life Sciences

   7.3. Banking, Financial Services & Insurance (BFSI)

   7.4. Retail & E-commerce

   7.5. Government & Public Sector

   7.6. Manufacturing

   7.7. Others

8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America AI Governance Market, by Component

      8.2.7. North America AI Governance Market, by Deployment Mode

      8.2.8. North America AI Governance Market, by Application

      8.2.9. North America AI Governance Market, by End-User Industry

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US AI Governance Market, by Component

               8.2.10.1.2. US AI Governance Market, by Deployment Mode

               8.2.10.1.3. US AI Governance Market, by Application

               8.2.10.1.4. US AI Governance Market, by End-User Industry

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. IBM Corporation

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Microsoft Corporation

   10.3. Google LLC

   10.4. Accenture PLC

   10.5. Oracle Corporation

   10.6. Amazon Web Services (AWS)

   10.7. SAP SE

   10.8. Salesforce

   10.9. Palantir Technologies

   10.10. Cognizant Technology Solutions

   10.11. Infosys Ltd.

   10.12. Capgemini

   10.13. PwC

   10.14. Deloitte

   10.15. KPMG

11. Appendix

Let us connect with you TOC

I have read the Terms & Conditions and Privacy Policy I agree to its terms

A comprehensive market research approach was employed to gather and analyze data on the AI Governance Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI Governance Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach - AI Governance Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI Governance ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI Governance Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down - AI Governance Market

Data Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Let us connect with you


I have read the Terms & Conditions and Privacy Policy I agree to its terms
Available Formats
REPORT BUYING OPTIONS


Buy Now