AI for Autonomous Vehicle Market By Application (Human-Machine Interface, Autonomous Driving, Driver Monitoring, Identity Authentication), By Technology (ML, CV, NLP), By Vehicle Type (Passenger, Commercial), and by Region; Global Insights & Forecast (2024 – 2030)

As per Intent Market Research, the AI for Autonomous Vehicle Market was valued at USD 1.1 billion in 2023-e and will surpass USD 3.6 billion by 2030; growing at a CAGR of 18.4% during 2024 - 2030.

The AI for Autonomous Vehicle Market is rapidly evolving, driven by technological advancements and an increasing focus on enhancing road safety and efficiency. The integration of artificial intelligence (AI) in autonomous vehicles enables them to analyze vast amounts of data from various sensors, making real-time decisions to navigate complex driving environments. As the automotive industry embraces automation and electrification, the demand for AI technologies continues to grow, fostering innovation and investment.

The primary drivers of growth in the AI in Autonomous Vehicle Market include the rising demand for enhanced safety features, cost reductions in technology implementation, and favorable government regulations promoting autonomous driving. As manufacturers strive to maintain a competitive edge, collaboration with technology companies and startups has become essential. With the market poised for substantial growth, stakeholders must adapt to the dynamic landscape to harness the full potential of AI technologies in autonomous vehicles.

Sensor Technology Segment is Largest Owing to Its Crucial Role in Autonomous Driving

The sensor technology segment holds the largest share in the AI in Autonomous Vehicle Market, primarily due to its essential role in enabling autonomous driving capabilities. Sensors, including Lidar, radar, cameras, and ultrasonic devices, are critical for gathering real-time data about the vehicle's surroundings. This information is processed by AI algorithms to facilitate safe navigation, obstacle detection, and decision-making. As the demand for advanced driver-assistance systems (ADAS) continues to surge, sensor technology has become indispensable in achieving higher levels of automation.

Moreover, the ongoing advancements in sensor technology are contributing to improved accuracy and reliability, thereby enhancing the overall safety of autonomous vehicles. Manufacturers are increasingly investing in the development of sophisticated sensors that can operate effectively under various environmental conditions. This investment trend is expected to bolster the sensor technology segment, allowing it to maintain its dominant position in the market throughout the forecast period.

AI Software Segment is Fastest Growing Owing to Rising Demand for Advanced Algorithms

The AI software segment is emerging as the fastest-growing subsegment within the AI in Autonomous Vehicle Market, driven by the increasing demand for advanced algorithms capable of enabling complex decision-making processes. Software plays a vital role in processing data collected from sensors, interpreting it, and guiding the vehicle's actions in real time. The rise of machine learning and deep learning technologies has revolutionized the capabilities of AI software, allowing for the development of more sophisticated algorithms that can handle unpredictable driving scenarios.

As manufacturers strive to enhance the performance and safety of autonomous vehicles, they are prioritizing investments in AI software development. This trend is expected to accelerate as more players enter the market, focusing on creating innovative software solutions that can improve vehicle intelligence. With the rapid advancements in AI capabilities, this subsegment is poised for significant growth, positioning itself as a key driver of the overall market expansion.

Hardware Segment is Largest Owing to Significant Infrastructure Investments

The hardware segment of the AI in Autonomous Vehicle Market is the largest owing to the substantial investments made in the development and deployment of advanced hardware systems. This segment encompasses various components, including processors, storage devices, and connectivity modules, all of which are essential for the efficient functioning of AI-driven autonomous vehicles. As automakers seek to enhance vehicle performance and reliability, they are increasingly turning to advanced hardware solutions that can support the computational demands of AI algorithms.

Furthermore, the hardware segment is supported by the growing trend of electrification in the automotive industry, as electric vehicles (EVs) often require advanced hardware configurations to optimize energy consumption and performance. With the integration of AI technologies, hardware systems must be capable of processing large volumes of data in real time, necessitating ongoing investments in cutting-edge technologies. As a result, the hardware segment is likely to continue dominating the market throughout the forecast period.

Application Segment is Fastest Growing Owing to Diverse Use Cases

The application segment of the AI in Autonomous Vehicle Market is witnessing rapid growth, driven by the diverse use cases of autonomous vehicles across various industries. From ride-sharing services to logistics and delivery, the versatility of autonomous vehicles is paving the way for innovative applications that enhance operational efficiency and customer experience. The demand for self-driving cars in urban environments is also rising, fueled by the need for sustainable transportation solutions and reduced congestion.

This fast-growing subsegment is characterized by increased investments in research and development aimed at expanding the capabilities of autonomous vehicles. Companies are exploring new application areas, such as public transport, agriculture, and mining, where autonomous technology can offer substantial cost savings and efficiency improvements. As these applications gain traction, the overall demand for AI in autonomous vehicles is expected to surge, further propelling market growth.

Region Segment: North America is Largest Owing to Technological Advancements and Investments

North America is the largest region in the AI in Autonomous Vehicle Market, primarily due to its significant technological advancements and substantial investments in research and development. The region is home to major automotive manufacturers and tech companies that are at the forefront of autonomous vehicle innovation. With favorable regulations and government initiatives promoting autonomous driving, North America has established itself as a hub for AI technology development and deployment.

The increasing adoption of electric and autonomous vehicles in the United States and Canada is further driving growth in this region. As consumers become more aware of the benefits of autonomous technologies, the demand for AI-driven solutions is expected to rise. Furthermore, collaborations between automotive manufacturers and technology firms are fostering a conducive environment for innovation, ensuring that North America remains a dominant player in the AI in Autonomous Vehicle Market throughout the forecast period.

Competitive Landscape: Key Players and Their Strategic Initiatives

The competitive landscape of the AI in Autonomous Vehicle Market is characterized by a diverse range of players, including established automotive manufacturers, technology companies, and startups. Major companies such as Tesla, Waymo, NVIDIA, and Ford are leading the charge in developing AI technologies for autonomous vehicles. These players are focusing on strategic collaborations, partnerships, and mergers to enhance their capabilities and expand their market presence.

In addition, investment in research and development is a key focus area for leading companies, enabling them to innovate and improve the performance of their AI-driven solutions. With the market expected to grow significantly, competition is intensifying, prompting companies to differentiate themselves through technological advancements and superior product offerings. As the landscape evolves, a combination of established firms and agile startups will play a pivotal role in shaping the future of the AI in Autonomous Vehicle Market.

Report Objectives

The report will help you answer some of the most critical questions in the AI for Autonomous Vehicle Market. A few of them are as follows:

  1. What are the key drivers, restraints, opportunities, and challenges influencing the market growth?
  2. What are the prevailing technology trends in the AI for Autonomous Vehicle Market?
  3. What is the size of the AI for Autonomous Vehicle Market based on segments, sub-segments, and regions?
  4. What is the size of different market segments across key regions: North America, Europe, Asia Pacific, Latin America, and Middle East & Africa?
  5. What are the market opportunities for stakeholders after analysing key market trends?
  6. Who are the leading market players and what are their market share and core competencies?
  7. What is the degree of competition in the market and what are the key growth strategies adopted by leading players?
  8. What is the competitive landscape of the market, including market share analysis, revenue analysis, and a ranking of key players?

Report Scope:

Report Features

Description

Market Size (2023-e)

USD 1.1 billion

Forecasted Value (2030)

USD 3.6 billion

CAGR (2024-2030)

18.4%

Base Year for Estimation

2023-e

Historic Year

2022

Forecast Period

2024-2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI for Autonomous Vehicle Market By Application (Human-Machine Interface, Autonomous Driving, Driver Monitoring, Identity Authentication), By Technology (ML, CV, NLP), By Vehicle Type (Passenger, Commercial)

Regional Analysis

North America (US, Canada), Europe (Germany, France, UK, Spain, Italy & Rest of Europe), Asia Pacific (China, Japan, South Korea, India, and rest of Asia Pacific), Latin America (Brazil, Mexico, Argentina, & Rest of Latin America), Middle East & Africa (Saudi Arabia, South Africa, Turkey, UAE, & Rest of MEA)

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1.Introduction

1.1.Market Definition

1.2.Scope of the Study

1.3.Research Assumptions

1.4.Study Limitations

2.   Research Methodology

2.1.Research Approach

2.1.1.Top-Down Method

2.1.2.Bottom-Up Method

2.1.3.Factor Impact Analysis

2.2.Insights & Data Collection Process

2.2.1.Secondary Research

2.2.2.Primary Research

2.3.Data Mining Process

2.3.1.Data Analysis

2.3.2.Data Validation and Revalidation

2.3.3.Data Triangulation

3.   Executive Summary

3.1.Major Markets & Segments

3.2.Highest Growing Regions and Respective Countries

3.3.Impact of Growth Drivers & Inhibitors

3.4.Regulatory Overview by Country 

4.   AI for Autonomous Vehicle Market, by Technology (Market Size & Forecast: USD Billion, 2024 – 2030)

4.1.Machine Learning

4.2.Computer Vision

4.3.Natural Language Processing

5.   AI for Autonomous Vehicle Market, by Application (Market Size & Forecast: USD Billion, 2024 – 2030)

5.1.Driver Monitoring

5.2.Identity Authentication

5.3.Human-Machine Interface

5.4.Autonomous Driving

5.5.Others

6.   AI for Autonomous Vehicle Market, by Vehicle Type (Market Size & Forecast: USD Billion, 2024 – 2030)

6.1.Passenger  

6.2.Commercial

7.   Regional Analysis (Market Size & Forecast: USD Billion, 2024 – 2030)

7.1.Regional Overview

7.2.North America

7.2.1.Regional Trends & Growth Drivers

7.2.2.Barriers & Challenges

7.2.3.Opportunities

7.2.4.Factor Impact Analysis

7.2.5.Technology Trends

7.2.6.North America AI for Autonomous Vehicle Market, by Technology

7.2.7.North America AI for Autonomous Vehicle Market, by Application

7.2.8.North America AI for Autonomous Vehicle Market, by Vehicle Type

               *Similar Segmentation will be provided at each regional level

7.3.By Country

7.3.1.US

7.3.1.1.US AI for Autonomous Vehicle Market, by Technology

7.3.1.2.US AI for Autonomous Vehicle Market, by Application

7.3.1.3.US AI for Autonomous Vehicle Market, by Vehicle Type

7.3.2.Canada

                        *Similar Segmentation will be provided at each country level

7.4.Europe

7.5.APAC

7.6.Latin America

7.7.Middle East & Africa

8.   Competitive Landscape

8.1.Overview of the Key Players

8.2.Competitive Ecosystem

8.2.1.Platform Manufacturers

8.2.2.Subsystem Manufacturers

8.2.3.Service Providers

8.2.4.Software Providers

8.3.Company Share Analysis

8.4.Company Benchmarking Matrix

8.4.1.Strategic Overview

8.4.2.Product Innovations

8.5.Start-up Ecosystem

8.6.Strategic Competitive Insights/ Customer Imperatives

8.7.ESG Matrix/ Sustainability Matrix

8.8.Manufacturing Network

8.8.1.Locations

8.8.2.Supply Chain and Logistics

8.8.3.Product Flexibility/Customization

8.8.4.Digital Transformation and Connectivity

8.8.5.Environmental and Regulatory Compliance

8.9.Technology Readiness Level Matrix

8.10.Technology Maturity Curve

8.11.Buying Criteria

9.Company Profiles

9.1.Nvidia

9.1.1.Company Overview

9.1.2.Company Financials

9.1.3.Product/Service Portfolio

9.1.4.Recent Developments

9.1.5.IMR Analysis

*Similar information will be provided for other companies 

9.2.IBM

9.3.Microsoft

9.4.Intel

9.5.Tesla

9.6.Xilinx

9.7.Micron

9.8.BMW

9.9.Volvo

9.10.Harman

10.Appendix

A comprehensive market research approach was employed to gather and analyse data on the AI for Autonomous Vehicle Market. In the process, the analysis was also done to estimate the parent market and relevant adjacencies to major the impact of them on the AI for Autonomous Vehicle Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach - AI for Autonomous Vehicle Market

Secondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the automotive sensors ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Estimation

A combination of top-down and bottom-up approaches was utilized to estimate the overall size of the AI for Autonomous Vehicle Market. These methods were also employed to estimate the size of various subsegments within the market. The market size estimation methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down - AI for Autonomous Vehicle Market

Data Triangulation

To ensure the accuracy and reliability of the market size estimates, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size estimates.

NA

Please state your requirements.


I have read the Terms & Conditions and Privacy Policy. I agree to its terms.

Report Buying Options