sales@intentmarketresearch.com
+1 463-583-2713
As per Intent Market Research, the AI-enabled Testing Market was valued at USD 5.0 billion in 2023 and will surpass USD 19.3 billion by 2030; growing at a CAGR of 21.3% during 2024 - 2030.
The AI-Enabled Testing Market is rapidly transforming the way businesses approach software and system testing. AI-driven testing solutions use machine learning, natural language processing, and deep learning to automate and enhance the testing process, offering more efficient and accurate results than traditional testing methods. As organizations strive to deliver high-quality software and digital experiences faster, AI-enabled testing helps reduce time, costs, and human errors associated with manual testing. The market for AI-enabled testing is gaining significant traction across industries due to its ability to streamline testing processes, enhance productivity, and ensure better performance and security of applications. The growing demand for software automation and digital transformation is fueling the adoption of AI-enabled testing technologies globally.
The AI-enabled testing market has witnessed a surge in adoption across industries such as IT, telecommunications, healthcare, and automotive, driven by the need for faster development cycles and the increasing complexity of modern software applications. With the integration of AI and machine learning in testing tools, businesses are able to not only automate repetitive testing tasks but also gain deeper insights and predictive capabilities. This market is expected to experience substantial growth in the coming years as companies prioritize testing efficiency, security, and scalability in their software development lifecycles.
The Machine Learning segment is the largest within the AI-enabled testing market. Machine learning algorithms can analyze historical data from previous testing cycles to identify patterns and predict future testing outcomes, allowing for more efficient and targeted testing processes. This capability makes machine learning particularly effective for automated software testing, where the system continuously learns and adapts based on past performance. It enables more accurate test case generation, prioritization, and optimization, leading to improved overall efficiency.
In software testing, machine learning-driven tools can autonomously detect anomalies, classify issues, and suggest fixes based on past test results, making them an indispensable tool for modern testing environments. The ability to predict potential risks, identify bugs, and optimize testing schedules makes machine learning a powerful solution for organizations looking to accelerate development while ensuring high-quality deliverables. As the demand for faster testing cycles grows, machine learning’s ability to automate complex tasks has solidified its position as the largest segment in the AI-enabled testing market.
The Automated Software Testing application is the fastest growing subsegment in the AI-enabled testing market. As organizations strive for faster time-to-market and improved software quality, the automation of software testing has become a critical component of their digital transformation strategies. Automated testing powered by AI allows for the execution of more tests in less time, with minimal human intervention, reducing the risk of errors and improving the accuracy of test results. Additionally, AI-driven tools can adapt to changes in the software and automatically update test cases, enhancing the flexibility of testing procedures.
Automated software testing is particularly advantageous in Agile and DevOps environments, where speed and flexibility are paramount. With the growing complexity of modern applications and the increasing need for continuous integration and continuous delivery (CI/CD) pipelines, AI-enabled automated testing solutions are becoming indispensable for businesses. As organizations continue to focus on reducing manual efforts and increasing productivity, the adoption of AI-based automated testing tools is expected to grow rapidly, driving the expansion of this subsegment in the market.
The IT & Telecommunications industry is the largest end-use sector for AI-enabled testing, driven by the immense demand for software testing in the development of complex IT systems and telecommunications infrastructure. The rapid growth in cloud computing, mobile applications, and digital services has led to an increased need for robust testing processes that can handle large-scale software deployments. AI-enabled testing tools help address these challenges by automating various testing phases and providing more accurate results, which is particularly crucial in the fast-paced IT and telecommunications sectors.
AI testing tools are being increasingly integrated into the software development lifecycle in these industries to automate functional, security, and performance testing. These industries also benefit from AI’s ability to quickly adapt and perform regression testing, ensuring that newly developed software does not break existing systems. With the growing adoption of AI technologies and the increasing demand for efficient software testing solutions, the IT & Telecommunications sector remains a key driver of the AI-enabled testing market’s growth.
North America is the largest region in the AI-enabled testing market, supported by its advanced technological infrastructure and high levels of investment in AI and machine learning technologies. The region is home to some of the largest technology companies, including IBM, Google, Microsoft, and Amazon, who are leading the development and implementation of AI-powered testing tools. These companies have heavily invested in research and development to create cutting-edge AI solutions that can streamline the testing process, reduce manual errors, and optimize test coverage across industries.
Furthermore, the high concentration of software development firms, coupled with the region’s focus on digital transformation, has propelled the adoption of AI-enabled testing tools. North America’s robust IT and telecommunications sectors also contribute to the region’s dominance in the market. As businesses increasingly rely on automation and AI to enhance their software development processes, North America’s leadership in AI technology ensures its continued dominance in the AI-enabled testing market.
The AI-Enabled Testing Market is highly competitive, with several leading companies driving innovation and shaping the market landscape. Key players such as IBM, SmartBear, Micro Focus, Tricentis, and Qualitest are at the forefront of AI-driven testing solutions, offering a wide range of tools and platforms designed to automate and optimize various aspects of software testing. These companies are continuously investing in AI and machine learning technologies to improve the accuracy, speed, and efficiency of testing processes.
The competitive landscape is characterized by strategic partnerships, acquisitions, and collaborations aimed at enhancing product offerings and expanding market reach. As organizations seek more comprehensive and intelligent testing solutions, leading companies are focused on integrating AI with testing frameworks to create more robust and scalable solutions. The growing demand for automated testing in Agile and DevOps environments ensures that these companies remain key players in the rapidly evolving AI-enabled testing market.
IBM Corporation launched an AI-powered testing platform that integrates machine learning models to predict software defects and optimize testing processes for faster application delivery.
Microsoft Corporation announced the enhancement of its Azure DevOps platform with AI-driven testing tools, enabling automated functional and performance testing with predictive analytics.
Accenture entered into a partnership with a leading AI startup to develop an intelligent testing solution that combines automation and machine learning for more efficient software quality assurance.
Capgemini unveiled a new AI-based testing tool designed to streamline and accelerate the regression testing process for enterprises, reducing test cycles and improving application reliability.
Tricentis expanded its AI-enabled testing suite with the introduction of self-healing test automation, using machine learning to automatically adapt test scripts to changes in the software environment.
Accenture
Atos
Capgemini
Cognizant Technology Solutions
HCL Technologies
IBM Corporation
Infosys
Microsoft Corporation
Oracle Corporation
SAS Institute
SmartBear Software
TCS (Tata Consultancy Services)
Wipro
Report Features |
Description |
Market Size (2023) |
USD 5.0 Billion |
Forecasted Value (2030) |
USD 19.3 Billion |
CAGR (2024 – 2030) |
21.3% |
Base Year for Estimation |
2023 |
Historic Year |
2022 |
Forecast Period |
2024 – 2030 |
Report Coverage |
Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments |
Segments Covered |
AI-enabled Testing Market by Technology (Machine Learning, Natural Language Processing (NLP), Deep Learning), Application (Automated Software Testing, Performance Testing, Functional Testing, Security Testing, Regression Testing), End-Use Industry (IT & Telecommunications, Healthcare, Automotive, BFSI, Retail, Manufacturing) |
Regional Analysis |
North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa) |
Major Companies |
Accenture, Atos, Capgemini, Cognizant Technology Solutions, HCL Technologies, IBM Corporation, Microsoft Corporation, Oracle Corporation, Qualitest, SAS Institute, SmartBear Software, TCS (Tata Consultancy Services), Wipro |
Customization Scope |
Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements |
1. Introduction |
1.1. Market Definition |
1.2. Scope of the Study |
1.3. Research Assumptions |
1.4. Study Limitations |
2. Research Methodology |
2.1. Research Approach |
2.1.1. Top-Down Method |
2.1.2. Bottom-Up Method |
2.1.3. Factor Impact Analysis |
2.2. Insights & Data Collection Process |
2.2.1. Secondary Research |
2.2.2. Primary Research |
2.3. Data Mining Process |
2.3.1. Data Analysis |
2.3.2. Data Validation and Revalidation |
2.3.3. Data Triangulation |
3. Executive Summary |
3.1. Major Markets & Segments |
3.2. Highest Growing Regions and Respective Countries |
3.3. Impact of Growth Drivers & Inhibitors |
3.4. Regulatory Overview by Country |
4. AI-enabled Testing Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030) |
4.1. Machine Learning |
4.2. Natural Language Processing (NLP) |
4.3. Deep Learning |
4.4. Others |
5. AI-enabled Testing Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030) |
5.1. Automated Software Testing |
5.2. Performance Testing |
5.3. Functional Testing |
5.4. Security Testing |
5.5. Regression Testing |
5.6. Others |
6. AI-enabled Testing Market, by End-Use Industry (Market Size & Forecast: USD Million, 2022 – 2030) |
6.1. IT & Telecommunications |
6.2. Healthcare |
6.3. Automotive |
6.4. BFSI |
6.5. Retail |
6.6. Manufacturing |
6.7. Others |
7. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030) |
7.1. Regional Overview |
7.2. North America |
7.2.1. Regional Trends & Growth Drivers |
7.2.2. Barriers & Challenges |
7.2.3. Opportunities |
7.2.4. Factor Impact Analysis |
7.2.5. Technology Trends |
7.2.6. North America AI-enabled Testing Market, by Technology |
7.2.7. North America AI-enabled Testing Market, by Application |
7.2.8. North America AI-enabled Testing Market, by End-Use Industry |
7.2.9. By Country |
7.2.9.1. US |
7.2.9.1.1. US AI-enabled Testing Market, by Technology |
7.2.9.1.2. US AI-enabled Testing Market, by Application |
7.2.9.1.3. US AI-enabled Testing Market, by End-Use Industry |
7.2.9.2. Canada |
7.2.9.3. Mexico |
*Similar segmentation will be provided for each region and country |
7.3. Europe |
7.4. Asia-Pacific |
7.5. Latin America |
7.6. Middle East & Africa |
8. Competitive Landscape |
8.1. Overview of the Key Players |
8.2. Competitive Ecosystem |
8.2.1. Level of Fragmentation |
8.2.2. Market Consolidation |
8.2.3. Product Innovation |
8.3. Company Share Analysis |
8.4. Company Benchmarking Matrix |
8.4.1. Strategic Overview |
8.4.2. Product Innovations |
8.5. Start-up Ecosystem |
8.6. Strategic Competitive Insights/ Customer Imperatives |
8.7. ESG Matrix/ Sustainability Matrix |
8.8. Manufacturing Network |
8.8.1. Locations |
8.8.2. Supply Chain and Logistics |
8.8.3. Product Flexibility/Customization |
8.8.4. Digital Transformation and Connectivity |
8.8.5. Environmental and Regulatory Compliance |
8.9. Technology Readiness Level Matrix |
8.10. Technology Maturity Curve |
8.11. Buying Criteria |
9. Company Profiles |
9.1. Accenture |
9.1.1. Company Overview |
9.1.2. Company Financials |
9.1.3. Product/Service Portfolio |
9.1.4. Recent Developments |
9.1.5. IMR Analysis |
*Similar information will be provided for other companies |
9.2. Atos |
9.3. Capgemini |
9.4. Cognizant Technology Solutions |
9.5. HCL Technologies |
9.6. IBM Corporation |
9.7. Infosys |
9.8. Microsoft Corporation |
9.9. Oracle Corporation |
9.10. Qualitest |
9.11. SAS Institute |
9.12. SmartBear Software |
9.13. TCS (Tata Consultancy Services) |
9.14. Tricentis |
9.15. Wipro |
10. Appendix |
A comprehensive market research approach was employed to gather and analyze data on the AI-enabled Testing Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI-enabled Testing Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.
Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.
Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI-enabled Testing ecosystem. The primary research objectives included:
A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI-enabled Testing Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:
To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.