sales@intentmarketresearch.com

  +1 463-583-2713

AI in Food & Beverages Market By Technology (Machine Learning, Computer Vision, Natural Language Processing, Robotics & Automation), By Application (Food Sorting, Consumer Engagement, Quality Control and Safety Compliance, Production and Packaging, Maintenance), By Deployment (Cloud, On-premises), By End-use (Food Processing, Supply Chain Management, Hotel & Restaurant), and By Region; Global Insights & Forecast (2024 – 2030)

Published: November, 2024  
|   Report ID: FB4405  
|   Food and Beverage

As per Intent Market Research, the AI in Food & Beverages Market was valued at USD 6.8 billion in 2023 and will surpass USD 18.5 billion by 2030; growing at a CAGR of 15.4% during 2024 - 2030.

The AI in food and beverages market is seeing a transformative shift as the industry embraces digital technologies to improve operational efficiency, enhance product quality, and meet consumer demand for sustainability. AI is being widely deployed across various stages of food production, from supply chain management to consumer engagement, to automate processes, streamline operations, and create smarter solutions. With AI's ability to analyze vast datasets and generate predictive insights, companies in the food and beverage sector can enhance product quality, optimize inventory management, and offer personalized consumer experiences. This market has expanded rapidly as both food processors and restaurants seek to integrate advanced technology into their operations to stay competitive and cater to evolving consumer preferences.

Machine Learning in Food & Beverages Market Is Largest Owing to Efficiency Gains

In the technology segment, machine learning (ML) stands out as the largest contributor to the AI in food and beverages market. ML algorithms are used extensively to optimize various processes, ranging from supply chain management to predictive maintenance and demand forecasting. Machine learning models analyze historical data to predict trends, identify consumer preferences, and recommend products, ensuring businesses can adapt quickly to market shifts. For instance, machine learning algorithms help optimize food production by predicting the required ingredients and quantities, thus reducing waste and ensuring the timely availability of fresh products. This technology has proven to significantly increase efficiency in food production and distribution by enabling real-time decision-making.

Additionally, machine learning plays a crucial role in personalizing consumer experiences. Companies are increasingly using ML algorithms to gather and analyze customer data to create personalized recommendations for food and beverages, increasing customer satisfaction and boosting sales. The ability to predict trends and adjust production schedules accordingly also helps companies to minimize surplus inventory, reducing costs and improving profitability. As a result, machine learning is expected to continue to dominate the AI technology segment in the food and beverage industry, driving greater efficiency and consumer-focused innovations.

AI in Food & Beverages Market Share

AI for Quality Control and Safety Compliance Is Fastest Growing Owing to Increased Demand for Food Safety

Among the applications of AI in food and beverages, quality control and safety compliance is the fastest growing subsegment. The increasing focus on food safety, along with stricter regulations and consumer demand for higher quality standards, has pushed the adoption of AI technologies in quality control. AI-driven systems, particularly those powered by computer vision and machine learning, are being used to monitor and ensure food quality throughout the production process. These technologies can detect defects, such as contamination or foreign objects, on production lines in real-time, reducing the chances of food safety incidents and improving the overall quality of products.

As food safety regulations become more stringent globally, AI-powered solutions are becoming essential for ensuring compliance. Automated systems can quickly identify non-compliance issues, minimizing the risk of regulatory fines or reputational damage. The ability to enhance quality control through AI reduces the need for manual inspection, increases the efficiency of production lines, and ensures that only high-quality products reach consumers. This growing emphasis on quality assurance and food safety is expected to accelerate the adoption of AI technologies in the food and beverage industry, making it a key driver of market expansion.

Cloud Deployment Is Dominating the AI Food & Beverages Market Owing to Scalability

In the deployment segment, cloud-based solutions dominate the AI in food and beverages market, driven by their scalability, cost-effectiveness, and accessibility. Cloud platforms offer companies the ability to store vast amounts of data, run machine learning algorithms, and access advanced AI tools without the need for heavy investments in physical infrastructure. This has proven particularly advantageous for food processors, supply chain operators, and restaurants that require flexible, scalable solutions to manage increasing volumes of data and dynamic consumer demands.

Cloud-based AI solutions allow businesses to scale their operations quickly and efficiently, enabling them to process data and derive insights in real-time. For example, cloud platforms can be used for demand forecasting, inventory management, and consumer behavior analysis, allowing companies to optimize their operations while reducing costs. Additionally, cloud solutions provide access to AI tools and resources that smaller businesses may not have been able to afford otherwise, democratizing AI and making it accessible across the food and beverage industry. The flexibility and scalability offered by cloud solutions are key reasons why this deployment model is expected to maintain dominance in the market.

Food Processing Industry Is Largest End-Use Segment for AI in Food & Beverages

In the end-use segment, food processing is the largest subsegment in the AI in food and beverages market. Food processing companies are increasingly adopting AI technologies to streamline operations, improve production efficiency, and ensure food safety. AI is being used to optimize production lines, reduce waste, and automate tasks like sorting, packaging, and labeling. AI-powered robots and automation systems are also being employed to enhance the speed and accuracy of food processing, ensuring that products are produced efficiently and meet the highest quality standards.

With rising consumer demand for personalized and healthy food options, food processors are turning to AI to innovate and enhance their product offerings. AI can analyze consumer preferences, predict market trends, and optimize ingredient selection, which is particularly valuable for creating customized food products. Furthermore, the integration of AI in food processing enhances supply chain management, enabling companies to improve logistics and reduce food spoilage. As a result, food processing is set to continue as the dominant end-use segment for AI in food and beverages, as the industry increasingly turns to technology to meet modern challenges.

North America Is the Largest Region in AI in Food & Beverages Market

North America is the largest region in the AI in food and beverages market, owing to its advanced technological infrastructure, high adoption rates of AI, and strong food and beverage industry presence. The United States, in particular, has seen widespread integration of AI across various food sectors, from manufacturing to retail. Major food processors, restaurants, and retailers in North America are increasingly leveraging AI to optimize operations, improve food safety, and enhance customer experiences. With high investment in R&D and a favorable regulatory environment, North America remains a leader in the AI-driven transformation of the food and beverage sector.

The region’s food and beverage industry is also highly competitive, with both established companies and startups driving innovation through the use of AI technologies. As AI applications continue to evolve, North America is expected to maintain its dominance, supported by increasing consumer demand for personalized food experiences, health-conscious options, and sustainability.

AI in Food & Beverages Market Size by Region 2030

Leading Companies and Competitive Landscape

The AI in food and beverages market is competitive, with several key players leading the charge in AI innovation. IBM, Google, and Microsoft are prominent technology companies offering AI solutions tailored to the food and beverage sector. These companies are partnering with food manufacturers, retailers, and restaurants to implement AI in food production, quality control, and supply chain management.

On the food and beverage side, companies like Nestlé, PepsiCo, and Unilever are also integrating AI to enhance their operations. These players are using AI to streamline production processes, improve food safety compliance, and enhance customer engagement. Additionally, numerous startups are emerging in the AI space, focusing on specialized areas such as food sorting, robotics, and personalized food services. The competitive landscape is marked by a combination of partnerships, technological collaborations, and investments in research and development to drive further innovation and maintain leadership in this rapidly growing market.

Recent Developments:

  • In July 2024, Nestlé announced the launch of an AI-powered smart kitchen appliance that automates cooking processes, making meal preparation easier and more efficient for consumers.
  • In March 2024, IBM unveiled an AI-driven system for food safety that uses machine learning to predict contamination risks in food processing plants, providing faster, more accurate insights into potential hazards.
  • In December 2023, PepsiCo partnered with an AI startup to enhance its supply chain with predictive analytics, reducing food waste by more than 15% across its North American operations.
  • In September 2023, Unilever integrated AI into its product development process to personalize food recipes based on consumer preferences, aiming to reduce food waste while meeting specific dietary needs.
  • In May 2023, McDonald's implemented a new AI-based drive-thru system in the US, streamlining order-taking and reducing wait times while enhancing customer satisfaction.

List of Leading Companies:

  • ABB
  • Honeywell International Inc.
  • IBM Corporation
  • Key Technology
  • NVIDIA Corporation
  • Rockwell Automation
  • Sesotec GmbH
  • Sight Machine
  • Siemens
  • TOMRA Systems ASA

Report Scope:

Report Features

Description

Market Size (2023)

USD 6.8 billion

Forecasted Value (2030)

USD 18.5 billion

CAGR (2024 – 2030)

15.4%

Base Year for Estimation

2023

Historic Year

2022

Forecast Period

2024 – 2030

Report Coverage

Market Forecast, Market Dynamics, Competitive Landscape, Recent Developments

Segments Covered

AI in Food & Beverages Market By Technology (Machine Learning, Computer Vision, Natural Language Processing, Robotics & Automation), By Application (Food Sorting, Consumer Engagement, Quality Control and Safety Compliance, Production and Packaging, Maintenance), By Deployment (Cloud, On-premises), By End-use (Food Processing, Supply Chain Management, Hotel & Restaurant)

Regional Analysis

North America (US, Canada, Mexico), Europe (Germany, France, UK, Italy, Spain, and Rest of Europe), Asia-Pacific (China, Japan, South Korea, Australia, India, and Rest of Asia-Pacific), Latin America (Brazil, Argentina, and Rest of Latin America), Middle East & Africa (Saudi Arabia, UAE, Rest of Middle East & Africa)

Major Companies

ABB, Honeywell International Inc., IBM Corporation, Key Technology, NVIDIA Corporation, Rockwell Automation, Sesotec GmbH, Sight Machine, Siemens

Customization Scope

Customization for segments, region/country-level will be provided. Moreover, additional customization can be done based on the requirements

1. Introduction

   1.1. Market Definition

   1.2. Scope of the Study

   1.3. Research Assumptions

   1.4. Study Limitations

2. Research Methodology

   2.1. Research Approach

      2.1.1. Top-Down Method

      2.1.2. Bottom-Up Method

      2.1.3. Factor Impact Analysis

  2.2. Insights & Data Collection Process

      2.2.1. Secondary Research

      2.2.2. Primary Research

   2.3. Data Mining Process

      2.3.1. Data Analysis

      2.3.2. Data Validation and Revalidation

      2.3.3. Data Triangulation

3. Executive Summary

   3.1. Major Markets & Segments

   3.2. Highest Growing Regions and Respective Countries

   3.3. Impact of Growth Drivers & Inhibitors

   3.4. Regulatory Overview by Country

4. AI in Food & Beverages Market, by Technology (Market Size & Forecast: USD Million, 2022 – 2030)

   4.1. Machine Learning

   4.2. Computer Vision

   4.3. Natural Language Processing

   4.4. Robotics & Automation

5. AI in Food & Beverages Market, by Application (Market Size & Forecast: USD Million, 2022 – 2030)

   5.1. Food Sorting

   5.2. Consumer Engagement

   5.3. Quality Control and Safety Compliance

   5.4. Production and Packaging

   5.5. Maintenance

   5.6. Others

6. AI in Food & Beverages Market, by Deployment (Market Size & Forecast: USD Million, 2022 – 2030)

   6.1. Cloud

   6.2. On-premises

7. AI in Food & Beverages Market, by End-use (Market Size & Forecast: USD Million, 2022 – 2030)

   7.1. Food Processing

   7.2. Supply Chain Management

   7.3. Hotel & Restaurant

8. Regional Analysis (Market Size & Forecast: USD Million, 2022 – 2030)

   8.1. Regional Overview

   8.2. North America

      8.2.1. Regional Trends & Growth Drivers

      8.2.2. Barriers & Challenges

      8.2.3. Opportunities

      8.2.4. Factor Impact Analysis

      8.2.5. Technology Trends

      8.2.6. North America AI in Food & Beverages Market, by Technology

      8.2.7. North America AI in Food & Beverages Market, by Application

      8.2.8. North America AI in Food & Beverages Market, by Deployment

      8.2.9. North America AI in Food & Beverages Market, by End-use

      8.2.10. By Country

         8.2.10.1. US

               8.2.10.1.1. US AI in Food & Beverages Market, by Technology

               8.2.10.1.2. US AI in Food & Beverages Market, by Application

               8.2.10.1.3. US AI in Food & Beverages Market, by Deployment

               8.2.10.1.4. US AI in Food & Beverages Market, by End-use

         8.2.10.2. Canada

         8.2.10.3. Mexico

    *Similar segmentation will be provided for each region and country

   8.3. Europe

   8.4. Asia-Pacific

   8.5. Latin America

   8.6. Middle East & Africa

9. Competitive Landscape

   9.1. Overview of the Key Players

   9.2. Competitive Ecosystem

      9.2.1. Level of Fragmentation

      9.2.2. Market Consolidation

      9.2.3. Product Innovation

   9.3. Company Share Analysis

   9.4. Company Benchmarking Matrix

      9.4.1. Strategic Overview

      9.4.2. Product Innovations

   9.5. Start-up Ecosystem

   9.6. Strategic Competitive Insights/ Customer Imperatives

   9.7. ESG Matrix/ Sustainability Matrix

   9.8. Manufacturing Network

      9.8.1. Locations

      9.8.2. Supply Chain and Logistics

      9.8.3. Product Flexibility/Customization

      9.8.4. Digital Transformation and Connectivity

      9.8.5. Environmental and Regulatory Compliance

   9.9. Technology Readiness Level Matrix

   9.10. Technology Maturity Curve

   9.11. Buying Criteria

10. Company Profiles

   10.1. ABB

      10.1.1. Company Overview

      10.1.2. Company Financials

      10.1.3. Product/Service Portfolio

      10.1.4. Recent Developments

      10.1.5. IMR Analysis

    *Similar information will be provided for other companies 

   10.2. Honeywell International Inc.

   10.3. IBM Corporation

   10.4. Key Technology

   10.5. NVIDIA Corporation

   10.6. Rockwell Automation

   10.7. Sesotec GmbH

   10.8. Sight Machine

   10.9. Siemens

   10.10. TOMRA Systems ASA

11. Appendix

Let us connect with you TOC

I have read the Terms & Conditions and Privacy Policy I agree to its terms

A comprehensive market research approach was employed to gather and analyze data on the AI in Food & Beverages Market. In the process, the analysis was also done to analyze the parent market and relevant adjacencies to measure the impact of them on the AI in Food & Beverages Market. The research methodology encompassed both secondary and primary research techniques, ensuring the accuracy and credibility of the findings.

Research Approach - AI in Food & Beverages MarketSecondary Research

Secondary research involved a thorough review of pertinent industry reports, journals, articles, and publications. Additionally, annual reports, press releases, and investor presentations of industry players were scrutinized to gain insights into their market positioning and strategies.

Primary Research

Primary research involved conducting in-depth interviews with industry experts, stakeholders, and market participants across the AI in Food & Beverages ecosystem. The primary research objectives included:

  • Validating findings and assumptions derived from secondary research
  • Gathering qualitative and quantitative data on market trends, drivers, and challenges
  • Understanding the demand-side dynamics, encompassing end-users, component manufacturers, facility providers, and service providers
  • Assessing the supply-side landscape, including technological advancements and recent developments

Market Size Assessment

A combination of top-down and bottom-up approaches was utilized to analyze the overall size of the AI in Food & Beverages Market. These methods were also employed to assess the size of various subsegments within the market. The market size assessment methodology encompassed the following steps:

  1. Identification of key industry players and relevant revenues through extensive secondary research
  2. Determination of the industry's supply chain and market size, in terms of value, through primary and secondary research processes
  3. Calculation of percentage shares, splits, and breakdowns using secondary sources and verification through primary sources

Bottom Up and Top Down - AI in Food & Beverages MarketData Triangulation

To ensure the accuracy and reliability of the market size, data triangulation was implemented. This involved cross-referencing data from various sources, including demand and supply side factors, market trends, and expert opinions. Additionally, top-down and bottom-up approaches were employed to validate the market size assessment.

Let us connect with you


I have read the Terms & Conditions and Privacy Policy I agree to its terms
Available Formats
REPORT BUYING OPTIONS


Buy Now